期刊文献+

一类Z_2对称五次微分系统的中心条件和极限环分支

CENTER CONDITIONS AND BIFURCATIONS OF LIMIT CYCLES FOR A CLASS OF QUINTIC DIFFERENTIAL SYSTEMS WITH Z_2 SYMMETRY
下载PDF
导出
摘要 本文研究了一类Z2对称五次微分系统的中心条件和小振幅极限环分支.通过前6阶焦点量的计算,获得了原点为中心的充要条件,并证明系统从原点分支出的小振幅极限环的个数至多为6.最后通过构造后继函数,给出系统具有6个围绕原点的小振幅极限环的实例. In this paper,the center conditions and bifurcations of small amplitude limit cycles for a class of quintic systems with Z2 symmetry are investigated.By the computations of the first six focal quantities,the necessary and sufficient conditions for the origin to be center are derived,and the maximal number of small amplitude limit cycles is proved to be 6.Finally,by constructing displacement function,a concrete example of quintic system is proved to have six small amplitude limit cycles around the origin.
作者 桑波
出处 《数学杂志》 CSCD 北大核心 2016年第5期1040-1046,共7页 Journal of Mathematics
基金 数学天元基金资助项目(11226041)
关键词 五次系统 焦点量 极限环 后继函数 quintic system focal quantity limit cycle displacement function
  • 相关文献

参考文献14

  • 1Sadovskii A P, Shcheglova T V. Solutions of the center focus problem for a nine-parameter cubic system[J]. Differ. Equa., 2011, 47(2): 208-223.
  • 2刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 3刘一戎,李继彬.平面向量场的若干经典问题[M].北京:科学出版社,2010.
  • 4Wang D M. Mechanical manipulation for a class of differential systems[J]. J. Symb. Comput., 1991 12(2): 233-254.
  • 5Yu P. Computation of normal forms via a perturbation technique[J]. J. Sound Vib., 1998, 211(1) 19-38.
  • 6桑波,朱思铭.一类微分系统的非退化中心问题[J].系统科学与数学,2013,33(5):599-606. 被引量:3
  • 7Lloyd N G, Pearson J M. Symmetry in planar dynamical systems[J]. J. Symb. Comput., 2002, 33(3): 357-366.
  • 8Cozma D. Darboux integrability and rational reversibility in cubic systems with two invariant straight lines[J]. Electronic J. Differ. Equa., 2013, 2013(23): 1-19.
  • 9Chen C, Corless R M, Maza M M, et al. An application of regular chain theory to the study of limit cycles[J]. Int. J. Bifur. Chaos, 2013, 23(9): 1350154 (21 pages).
  • 10Yu P, Tian Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system[J]. Communi. Nonl. Sci. Numer. Simul., 2014, 19(7): 2294-2308.

二级参考文献15

  • 1王铎,毛锐.计算Lyapunov量的复算法[J].自然科学进展(国家重点实验室通讯),1995,5(6):754-757. 被引量:6
  • 2刘一戎,李继彬.论复自治微分系统的奇点量[J].中国科学(A辑),1989,20(3):245-255. 被引量:94
  • 3张芷芬,丁同仁,黄文灶等.微分方程定性理论.北京:科学出版社,1985.
  • 4Wang D. A recursive formula and its application to computations of normal forms and focal values, eds by Liao S T, et al., Dynamical Systems, Singapore: World Sci. Publ., 1993.
  • 5Yu P. Computation of normal forms via a perturbation technique. Journal of Sound and Vibra- tion, 1998, 211(1): 19-38.
  • 6Algaba A, Freire E, Gamero E. Isochronicity via normal form. Qual. Theory Dyn. Syst., 2000, 1(2): 133-156.
  • 7Garcfa I A, Grau M. A Survey on the Inverse Integrating Factor. Qual. Theory Dyn. Syst., 2010, 9(1-2), 115-166.
  • 8Sadovskii A P:, Shcheglova T V. Solution of the center-focus problem for a nine-parameter cubic system. Differential Equations, 2011, 47(2): 208-223.
  • 9Dias F S, Mello L F. The center focus problem and small amplitude limit cycles in rigid systems. Discrete and Continous Dynamical Systems, 2012, 32(5): 1627-1637.
  • 10Coati R. Centers of planar polynomial systems. A review. Matematiche, 1998, 53(2): 207-240.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部