期刊文献+

Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric

Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric
下载PDF
导出
摘要 A1GaN/GaN fin-shaped metal-oxide-semiconductor high-electron-mobility transistors (fin-MOSHEMTs) with dif- ferent fin widths (30Ohm and lOOnm) on sapphire substrates are fabricated and characterized. High-quality self-Migned Al2O3 gate dielectric underneath an 80-nm T-shaped gate is employed by Muminum self-oxidation, which induces 4 orders of magnitude reduction in the gate leakage current. Compared with conventional planar MOSHEMTs, short channel effects of the fabricated fin-MOSHEMTs are significantly suppressed due to the tri- gate structure, and excellent de characteristics are obtained, such as extremely fiat output curves, smaller drain induced barrier lower, smaller subthreshold swing, more positive threshold voltage, higher transconductance and higher breakdown voltage. A1GaN/GaN fin-shaped metal-oxide-semiconductor high-electron-mobility transistors (fin-MOSHEMTs) with dif- ferent fin widths (30Ohm and lOOnm) on sapphire substrates are fabricated and characterized. High-quality self-Migned Al2O3 gate dielectric underneath an 80-nm T-shaped gate is employed by Muminum self-oxidation, which induces 4 orders of magnitude reduction in the gate leakage current. Compared with conventional planar MOSHEMTs, short channel effects of the fabricated fin-MOSHEMTs are significantly suppressed due to the tri- gate structure, and excellent de characteristics are obtained, such as extremely fiat output curves, smaller drain induced barrier lower, smaller subthreshold swing, more positive threshold voltage, higher transconductance and higher breakdown voltage.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期124-127,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 61306113
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部