期刊文献+

Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis 被引量:4

Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis
原文传递
导出
摘要 The siphon-shaped overflow tower is a new type of pressure-suppressing structure used in long water conveyance systems,and it plays a crucial role in guaranteeing the system's stability and safety during hydraulic transient processes.The flow in the tower is characteristic of weir flow in a closed duct,and is thus a complex air-water two-phase flow.Intensive studies of the flow patterns,the pressure pulsations,and the discharge capacity are necessary for better understanding of the flow processes and for the purpose of design.In this paper,we simulate the flow in a siphon-shaped overflow tower under both steady and unsteady flow conditions.Through a steady-flow field simulation,the relationship between the overflow discharge and the pressure in the connected pipeline is analyzed and an empirical formula for evaluating the discharge capacity is provided.Through a transient-flow field simulation,the negative-pressure distributions on the weir crest,the pressure pulsations on the crest and in the falling pond,and the transformation of the air-water two-phase flow in the downstream outlet pipe are analyzed.Moreover,the major influencing factors of the flow patterns,especially,the sectional area of the air vents,are clarified.It is indicated that the siphon-shaped overflow tower can regulate the pressure surge during hydraulic transients and guarantee the safety and stability of the pipeline system,if the shape and the vents are properly designed. The siphon-shaped overflow tower is a new type of pressure-suppressing structure used in long water conveyance systems,and it plays a crucial role in guaranteeing the system's stability and safety during hydraulic transient processes.The flow in the tower is characteristic of weir flow in a closed duct,and is thus a complex air-water two-phase flow.Intensive studies of the flow patterns,the pressure pulsations,and the discharge capacity are necessary for better understanding of the flow processes and for the purpose of design.In this paper,we simulate the flow in a siphon-shaped overflow tower under both steady and unsteady flow conditions.Through a steady-flow field simulation,the relationship between the overflow discharge and the pressure in the connected pipeline is analyzed and an empirical formula for evaluating the discharge capacity is provided.Through a transient-flow field simulation,the negative-pressure distributions on the weir crest,the pressure pulsations on the crest and in the falling pond,and the transformation of the air-water two-phase flow in the downstream outlet pipe are analyzed.Moreover,the major influencing factors of the flow patterns,especially,the sectional area of the air vents,are clarified.It is indicated that the siphon-shaped overflow tower can regulate the pressure surge during hydraulic transients and guarantee the safety and stability of the pipeline system,if the shape and the vents are properly designed.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第4期564-575,共12页 水动力学研究与进展B辑(英文版)
基金 supported by the National Natural Science Foun-dation of China(Grant Nos.51039005,50909076 and 51579187)
关键词 tower shaped downstream pipeline hydraulic falling crest unsteady outlet guarantee tower shaped downstream pipeline hydraulic falling crest unsteady outlet guarantee
  • 相关文献

参考文献3

二级参考文献15

共引文献30

同被引文献40

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部