期刊文献+

原子晶体非易失存储 被引量:2

Non-volatile memory based on atomic crystals
原文传递
导出
摘要 多功能低功耗芯片中存储、计算与通讯功能各模块的占用面积、数据交换速率等因素已经成为集成电路发展的瓶颈问题.可满足大数据核内传输速率的未来系统架构中高密度高性能存储技术需具备超低功耗、超小器件尺寸以及快速写入及非易失特性.未来存储技术包括采用新原理器件例如操控电子跃迁或离子移动代替电子输运、使用新材料以降低热量产生以及新型三维堆叠工艺提高密度.本综述聚焦于新材料特别是二维原子晶体在非易失存储技术中的应用.具有高电子迁移率、极限超薄沟道、超低界面态的二维原子晶体新材料因为其本征厚度约0.6–1.2 nm并具有丰富的能带结构为未来存储技术提供了优秀的解决方案,对器件进一步微缩提高集成度、提高稳定性和扩大应用场景以及开发新型存储器有着巨大潜力,是解决当今存储器功耗和集成度的崭新途径. The space and data-exchanging rate and other factors of storage, calculation and communication in the multi-functional low-power chips have become the bottlenecks of the development of integrated circuits. The ultralow power consumption of single-bit erasing/writing, the ultra-small device size, fast operation time and non-volatility are indispensable for high-density and high-speed storage in the future system architecture to satisfy the needs for big data exchanging in the core. The future storage technology consists of employing devices with new principles, such as controlling of electron transition and ionic migration superseding the electron transport, adopting new materials to lower the power consumption and introducing new 3D-stack technology to increase the density. This review focuses on the application of new materials in the non-volatile storage technology, especially the two-dimensional atomic crystals. Two-dimensional atomic crystals have some prominent properties, such as high electron mobility, ultimate ultrathin channel and ultralow surface states with an intrinsic thickness of 0.6.1.2 nm and abundant band structure, which provide an excellent solution for future storage technology. And they have enormous potential to further scale down to increase the integration level and improve stability, expand the application scenarios and develop new memory devices and they are a new method to break through the bottlenecks of power consumption and integrated level of memories.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第10期100-118,共19页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(编号:61376093)
关键词 原子晶体 二维原子晶体 非易失存储器 闪存 阻变存储器 atomic crystals two-dimensional materials non-volatile memory Flash memory resistive random access memory
  • 相关文献

参考文献119

  • 1Davari B, Dennard R H, Shahidi G G. CMOS scaling for high performance and low power-the next ten years. Proc IEEE, 1995,83: 595-606.
  • 2Dennard R H, Gaensslen F H, Hwa-Nien Yu F H, et al. Design of ion-implanted MOSFET's with very small physical dimensions. Proc IEEE, 1999, 87: 668--678.
  • 3Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dicha1cogenides. Nat Nanotech, 2012, 7: 699-712.
  • 4Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666--669.
  • 5Novoselov K S, Geim A K, Morozov S Y, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197-200.
  • 6Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183-191.
  • 7Wang X, Li X, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324: 768-771.
  • 8Yu Y J, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect. Nano Lett, 2009, 9: 3430-3434. arXiv: 0909.0020.
  • 9Zhang Y, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459: 820-823.
  • 10Balog R, Jorgensen B, Nilsson L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater, 2010, 9: 315-319.

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部