期刊文献+

相变存储器材料研究 被引量:4

Study of phase change materials for phase change random access memory
原文传递
导出
摘要 作为下一代最具竞争力的新型存储技术之一,相变存储技术近十多年来得到突飞猛进的发展,相关产品已经问世并实现量产.伴随着相变存储技术本身的发展,与其相关的基础研究也是近年来信息、材料等相关领域的研究热点.基于硫系化合物材料的相变存储介质是相变存储器的基础和核心,相变材料的性能决定相变存储器的性能.本文简要介绍了相变存储器的产业化动态、总结了常用GeSbTe相变材料及其机理的主要理论研究结果、分析了传统GeSbTe相变材料的C掺杂改性及其相变机理. Phase change memory technology, which is regarded as one of the most promising candidates for the next generation non-volatile memory technology, has achieved rapid development in the past ten years. Meanwhile, related products based on this technology have been put into the market and mass production has come true. With the development of phase change memory technology, the fundamental research has become a hot topic in the fields of information, materials, and so on. Phase change storage medium based on chalcogenide is the basis and core of phase change memory. The performance of phase change memory is determined by phase change material's performance. In this paper, the industrialization status of phase change memory are briefly introduced firstly, then the research progress of the commonly used GeSbTe phase change materials and the main phase transition mechanism is summarized. Finally, the C doping modification of the traditional GeSbTe and the phase change mechanism of C-doped GeSbTe materials is analyzed.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第10期119-127,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 中国科学院战略性先导科技专项(编号:XDA09020402) 国家重点基础研究发展计划(编号:2011CBA00607 2011CBA00602) 国家自然科学基金(编号:61076121)资助项目
关键词 相变存储器 GeSbTe 相变机理 C掺杂 phase change memory GeSbTe phase change mechanism C doping
  • 相关文献

参考文献35

  • 1Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968,21: 1450-1453.
  • 2Jedema F. Phase-change materials: Designing optical media of the future. Nat Mater, 2007, 6: 90-91.
  • 3Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of Ge'Ie-Sb, Tel pseudo binary amorphous thin films for an optical disk memory. J Appl Phys, 1991, 69: 2849-2856.
  • 4Neale R G, Nelson D L, Moore G E. Amorphous semiconductors part I: Nonvolatile and reprogramable, read-mostly memory is here. Electronics, 1790, 43: 56-60.
  • 5Wuttig M. Phase-change materials: Towards a universal memory? Nat Mater, 2005, 4: 265-266.
  • 6Atwood G. Engineering: Phase-change materials for electronic memories. Science, 2008, 321: 210-211.
  • 7Raoux S, Burr G W, Breitwisch M J, et al. Phase-change random access memory: A scalable technology. IBM J Res Dev, 2008, 52: 465-479.
  • 8Tyson S, Wicker G, Lowrey T, et al. Nonvolatile, high density, high performance phase-change memory. Aerosp Conf'Proc, 2000,5: 385-390.
  • 9Zhou W. Nanoimprint Lithography: An Enabling Process for Nanofabrication. Berlin: Springer, 2013.
  • 10Oh J H, Park J H, Lim Y S, et al. Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. In: Proceedings of2006 International Electron Devices Meeting. New York: IEEE,2006. 515-518.

同被引文献52

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部