摘要
In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.
In this paper, PbTe nanocubes are assembled on Bi0.5Sb1.5Te3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.
基金
supported by the 1000 Young Talents Program
the National Natural Science Foundation of China (21422507, 21321003, 215032337)
Institute of Chemistry, Chinese Academy of Sciences