期刊文献+

Lower work function of thermoelectric material by ordered arrays

Lower work function of thermoelectric material by ordered arrays
原文传递
导出
摘要 In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures. In this paper, PbTe nanocubes are assembled on Bi0.5Sb1.5Te3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第10期1264-1269,共6页 中国科学(化学英文版)
基金 supported by the 1000 Young Talents Program the National Natural Science Foundation of China (21422507, 21321003, 215032337) Institute of Chemistry, Chinese Academy of Sciences
关键词 work function PbTe nanocubes Bi0.5Sb1.5Te3 P-N sections 有序阵列 功函数 热电材料 紫外光电子能谱 PbTe 导体系统 有序结构 表面粗糙度
  • 相关文献

参考文献21

  • 1Liu ZT, Hu S J, Zhang LH, Chen JW, Peng JB, Cao Y. Sci China Chem, 2013, 56:1129-1136.
  • 2Kwon KC, Choi KS, Kim BJ, Lee JL, Kim SY. JPhys Chem C, 2012, 116:26586-26591.
  • 3Axnanda S, Scheele M, Crumlin E, Mao B, Chang R, Rani S, Faiz M, Wang S, Alivisatos AP, Liu Z. Nano Lett, 2013, 13:6176-6182.
  • 4Zhang Y, Pluchery O, Caillard L, Lamic-Humblot AF, Casale S, Chabal YJ, Salmeron M. Nano Lett, 2015, 15:51-55.
  • 5Yuan H, Chang S, Bargatin I, Wang NC, Riley DC, Wang H, Schwede JW, Provine J, Pop E, Shen ZX, Pianetta PA, Melosh NA, Howe RT. Nano Lett, 2015, 15:6475-6480.
  • 6Lv HY, Liu HJ, Pan L, Wen YW, Tan XJ, Shi J, Tang XF. Appl Phys Lett, 2010, 96:142101.
  • 7Voss J, Vojvodic A, Chou SH, Howe RT, Abild-Pedersen F. Phys Rev Appl, 2014, 2:024004.
  • 8Obaidulla SM, Giri PK. JMater Chem C, 2015, 3:7118-7127.
  • 9Cornett JE, Rabin O. Solid State Electron, 2014, 101:106-115.
  • 10Chuang C, Cheng S. Nano Res, 2014, 7:1592-1603.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部