期刊文献+

基于格子Boltzmann方法的微通道传热特性数值研究 被引量:1

A NUMERICAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTIC OF MICRO-CHANNEL STRUTURES BY LATTICE BOLTZMANN METHOD
下载PDF
导出
摘要 应用格子Boltzmann方法研究单相流体流过矩形和三角形微通道结构的对流换热特性。数值模拟结果展示出流体在不同微通道中的速度场和温度场。从温度场结果可发现,流体流经微通道时会在热壁面附近形成热边界层,并且热边界层的厚度随雷诺数Re的增大而变薄。另外,通过出口温度和努塞尔数Nu等物理量定量研究两种微通道结构的换热特性。数值结果表明,矩形微通道结构的换热性能优于三角形微通道结构。在场协同原理基础上,进一步分析造成两种微通道换热性能不同的原因。 In this paper, convection heat transfer characteristic of fluid flowing through two different micro-channel structures is studied using lattice Boltzmann method. The velocity and temperature field of fluid in different micro- channel structures are presented by numerical simulation results. It can be found that a thermal boundary layer is formed near the heated wall when fluid flowing through the micro-channel. And the thickness of thermal boundary layer decreases with Re increasing. In addition, the heat transfer characteristics of two micro-channel structures are researched by outlet temperature and Nu, quantitatively. Numerical results indicated that heat transfer performance of rectangular micro-channel is superior to that of triangular micro-channel. Based on field synergy principle, the reason why two micro- channel structures have different heat transfer characteristics is analyzed.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第9期2344-2349,共6页 Acta Energiae Solaris Sinica
基金 国家民委科研项目(14DLZ015) 辽宁省教育厅科学研究一般项目(L2015131) 中央高校基本科研业务费(DC201501052)
关键词 格子BOLTZMANN方法 微通道结构 传热特性 场协同原理 热边界层 lattice Boltzmann method micro- channel structure heat transfer characteristic field synergy principle thermal boundary layer
  • 相关文献

参考文献18

  • 1Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. Electron Device Letters, IEEE, 1981, 2(5) : 126-129.
  • 2Wu H Y, Cheng Ping. An experimental study of convective heat transfer in silicon microchannels withdifferent surface conditions [J]. International Journal of Heat and Mass Transfer, 2003, 46(14) : 2547-2556.
  • 3Peng Xiaofeng, Peterson G P. Convective heat transfer and flow friction for water flow in microchannel structures [J]. International Journal of Heat and Mass Transfer, 1996, 39(12): 2599-2608.
  • 4Sohel M R, Saidur R, Sabri M F M, et al. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel [J]. International Communications in Heat and Mass Transfer, 2013, 42: 75-81.
  • 5Wu Zan, Sunden B. On further enhancement of single- phase and flow boiling heat transfer in micro/ minichannels[J]. Renewable and Sustainable Energy Reviews, 2014, 40:11-27.
  • 6靳遵龙,李水云,雷佩玉,刘敏珊,张志超.矩形微通道内单相液体湍流对流流动与换热数值研究[J].压力容器,2013,30(5):7-12. 被引量:9
  • 7Ahmed M, Eslamian M. Laminar forced convection of a nanofluid in a microchannel: Effect of flow inertia and external forces on heat transfer and fluid flow characteristics [ J ]. Applied Thermal Engineering, 2015, 78 : 326-338.
  • 8Dixit T, Ghosh I. Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1298-1311.
  • 9Morini G L. Single-phase convective heat transfer in microchannels : A review of experimental results [J]. International Journal of Thermal Sciences, 2004, 43 (7): 631-651.
  • 10Chen Yongping, Zhang Chengbin, Shi Mingheng, et alThree-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks [J ~. International Communications in Heat and Mass Transfer, 2009, 36(9): 917-920.

二级参考文献15

  • 1Mehendale S,Jacobi A M.Fluid Flow and Heat Trans-fer at Microand Meso-scales with Applications to Heat Exchanger Design[J].Appl.Mech.Aev,2000,53:175-193.
  • 2Kandlikar S,Granda W.Evolution of Microchannel Flow Passages Thermohydraulic Performance and Fab-rication Technology[J].Heat Transfer Eng.,2003,24(1):3-17.
  • 3Yu D,Warrington Ro,Barron R,et al.An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes[C]//Proceedings of ASME/JSME Thernal Engineering Joint Conference,1995:523-530.
  • 4Tiselj G,Hetsroni B,Mavko A,et al.Effect of Axial Conduction on the Heat Transfer in Micro-channel[J].International Journal of Heat and Mass Transfer,2004,(47):2551-2565.
  • 5Poh S T,Ng E Y K.Heat Transfer and Flow in Mani-fold Microchannel Heat Sinks:a CFD Approach[C]//Electronics Packaging Technology Conference,1998:246-250.
  • 6Toh K C,Chen X Y,Chai J C.Numerical Computation of Fluid Flow and Heat Transfer in Microchannels[J].Int.J.Heat Mass Transfer,2002,(45):5133-5141.
  • 7Wang Y,Ding G F.Numerical Analysis of Heat Transfer in a Manifold Microchannel Heat Sink with High Efficient Copper Heat Spreader[J].Microsys-tem Technologies,2008,14(3):389-395.
  • 8Alm B,Imke U,Knitter R.Testing and Simulation of Ceramic Micro Heat Exchangers[J].Chemical Engi-neering Journal,2008,135S:S179-184.
  • 9Kwasi Foli,Tatsuya Okabe,Markus Olhofer,et al.Op-timization of Micro Heat Exchanger:CFD,Analytical Approach and Multi-objective Evolutionary Algo-rithms[J].Int.J.Heat Mass Transfer,2006,49(5):1090-1099.
  • 10Mohammeda H A,Bhaskaran G,Shuaib N H,et al.Numerical Study of Heat Transfer Enhancement of Counter Nanofluids Flow in Rectangular Microchannel Heat Exchanger[J].Superlattices and Microstruc-tures,2011,(50):215-233.

共引文献8

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部