期刊文献+

H_2Se气体硒化中温度对CIGS吸收层特性的影响 被引量:1

INFLUENCE OF TEMPERATURE ON THE PROPERTIES OF CIGS ABSORBING LAYERS IN H_2Se SELENIZATION PROCESS
下载PDF
导出
摘要 采用H_2Se气体对铜-铟-镓金属预制层进行硒化制备铜铟镓硒(CIGS)光吸收层,研究硒化过程中温度对CIGS结晶质量及光学特性的影响。400~500℃单一温度硒化制作的CIGS薄膜的表面平整性较差,存在颗粒状聚集物。在硒化前引入200℃低温预处理过程,可提高CIGS薄膜表面的平整性和致密性。在400℃硒化后导入500℃高温热处理过程可提高CIGS的结晶质量并改善Ga元素掺入的均匀性。光学特性测量显示,优化硒化温度可降低CIGS薄膜的缺陷态,从而提高Ga元素在薄膜中的掺入效果,CIGS薄膜的光学带隙可达1.14 e V。利用CIGS薄膜制备的太阳电池光电转换效率达13.1%,开压为519 m V,有效面积为0.38 cm^2。 We study the influence of temperature on the structural and optical properties of CIGS layers in H2Se gas selenization process for Cu-In-Ga precursor layer, It was found that a simple one-step selenization at 400-500 ℃ results in rough surface morphology with bulge granules. A pre-treatment at low temperature of 200 ℃ before the selenization at 400 ℃ helps to improve the flatness and compactness, and a high-temperature annealing at 500 ℃after the pre-treatment at 200 ℃ and selenization at 400 ℃ further improves the crystalline and optical properties of CIGS layers. Optical measurements showed that the optical absorption induced by defect states reduces and the substitution of Ga is enhanced by optimizing the temperature flow chat. The optical band gap of CIGS is 1.14 eV. A CIGS solar cell based on the selenized CIGS layer is fabricated and a conversion efficiency of 13.1% and open-circuit voltage of 519 mV are achieved on a 0.38 cm2 active area.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第9期2363-2369,共7页 Acta Energiae Solaris Sinica
基金 上海市浦江人才计划(14PJ1410500)
关键词 铜铟镓硒(CIGS) 硒化氢(H2Se) 硒化 结构特性 光学特性 CIGS H2Se selenization structural properties optical properties
  • 相关文献

参考文献14

  • 1Lin Wei-Ting, Chen Shenghui, Chan Shih-Hao, et al. Crystallization phase transition in the precursors of CIGS films by Ar-ion plasma etching process [J]. Vacuum, 2014, 99:1-6.
  • 2Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency : 22.3%[EB/OL]. http ://www.solar- frontier.com/eng/news/2015/C051171.html.
  • 3OFweek太阳能光伏网,SolarFrontierCIS薄膜电池孔径效率创17.8%新纪录[EB/OL].http://solar.oFweek.corn/2012-03/ART-260019-8300-28600203.html.
  • 4Schleussner S, Zimmermann U, W~ttjen T, et al. Effect of gallium grading in Cu (In, Ga)Se~ solar-cell absorbers produced by multi-stage coevaporation [J]. Solar Energy Materials and Solar Ceils, 2011,95(2) : 721-726. .
  • 5Hanket G, Shafarman W, McCandless B E, et al. Incongruent reaction of Cu- (InGa) intermetallic precursors in H~Se and H2S [J]. Journal of Applied Physics, 2007, DOI: 10.1063/1.2787151.
  • 6Chang C H. Processing and characterization of copper indium selenide for photovoltaic applications[D]. Gainesville : University of Florida, 1999.
  • 7Gremenok V F, Zaretskaya E P, Zalesski V B, et al. Preparation of C u (In, Ga )Se~ thin film solar cells by two- stage selenization processes using N2 gas[J]. Solar Energy Materials and Solar Cells, 2005, 89(2-3): 129-137.
  • 8Song Ho Keun, Jeong Jae Kyeong, Kim Hyeong Joon, et al. Fabrication of CuInj-~Ga~Seu thin film solar cells by sputtering and selenization process[J]. Thin Solid Films, 2003, 435(1-2) : 186-192.
  • 9Akhlesh G, Isomura S. Precursor modification for preparation of CIS films by selenization technique [J]. Solar Energy Materials and Solar Cells, 1998, 53 (3- 4) : 385--401.
  • 10Nishiwaki S, Satoh T, Hashimoto Y, et al. Preparation of Cu(In, Ga) Sez thin films at low substrate temperature[J]. Materials Research Society, 2001, doi: 10.1557/JWR.2001.0059.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部