期刊文献+

PVA/PES复合膜的制备及其渗透汽化脱盐性能研究 被引量:3

Preparation of PVA/PES pervaporation composite membranes for desalination
原文传递
导出
摘要 以聚醚砜(PES)超滤膜为基底,戊二醛为表面粘合剂,将由4-磺基邻苯二甲酸(SPTA)交联得到的聚乙烯醇(PVA)涂覆到PES表面得到了磺化PVA/PES复合膜。利用傅里叶变换红外光谱仪(FT-IR)、热失重分析仪(TGA)表征不同交联剂含量PVA膜的交联程度以及热稳定性,通过电子扫描显微镜(SEM)对复合膜的形貌进行表征。研究了交联剂含量对PVA/PES复合膜渗透汽化脱盐性能的影响,结果表明:随着交联剂含量的增加,致密膜的溶胀度先减小后增加,而水接触角先增加后减小;当交联度为15%时,复合膜的渗透汽化性能最优;性能最优复合膜的纯水通量在70℃时达到24.32 L/(m^2·h),在处理质量分数为3.5%Na Cl水溶液时的水通量达到13.27 L/(m2·h),对盐的截留率高达99.88%。 Sulfonated-poly( vinyl alcohol)( PVA)/polyethersulfone( PES) composite membranes have been fabricated.Specifically,a commercial PES ultrafiltration membrane was first soaked in a glutaraldehyde solution and then coated with a thin layer of PVA which was mixed with sulfophthalic acid( SPTA) as a crosslinking agent.SPTA not only serves as the crosslinker but also increases the hydrophilicity of the PVA layer.The physiochemical properties of the composite membranes were characterized using FT-IR、TGA、SEM、contact angle and swelling degree measurements.The experimental results showed that as the amount of SPTA increased,the swelling degree of the dense PVA films first decreased and then increased,whilst the water contact angles first increased and then decreased.The best separation performance was obtained when the crosslinking degree was 15%.The membrane exhibited a water flux of 24.32 L /(m^2·h) for pure water,and 13.27 L/(m^2·h) for 3.5% mass fraction of NaCl solution with a salt rejection to Na Cl of 99.88% at 70 ℃.
作者 徐小颖 曹兵 李培 XU XiaoYing CAO Bing LI Pei(Laboratory of Membrane Science and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期39-44,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(51373014/51403012) 中央高校基本科研业务费(buctrc201415)
关键词 渗透汽化 复合膜 脱盐 pervaporation composite membrane desalination
  • 相关文献

参考文献18

  • 1侯勇,王桂华.海水淡化技术现状与发展[J].吉林电力,2011,39(1):8-10. 被引量:20
  • 2朱玉兰.海水淡化技术的研究进展[J].能源研究与信息,2010,26(2):72-78. 被引量:34
  • 3Zhou D, Zhu L J, Fu Y Y, et al.Development of lower cost seawater desalination processes using nanofiltration technologies-A review[J].Desalination, 2015, 376: 109-116.
  • 4Song Y F, Gao X L, Li T M, et al.Improvement of overall water recovery by increasing RNF with recirculation in a NF-RO integrated membrane process for seawater desalination [J].Desalination, 2015, 361: 95-104.
  • 5Semiat R.Energy issues in desalination processes [J].Environmental Science & Technology, 2008, 42(22): 8193-8201.
  • 6Lin W H, Zhu T R, Li Q, et al.Study of pervaporation for dehydration of caprolactam through PVA/nano silica composite membranes [J].Desalination, 2012, 285: 39-45.
  • 7Das P, Ray S K, Kuila S B, et al.Systematic choice of crosslinker and filler for pervaporation membrane: A case study with dehydration of isopropyl alcohol water mixtures by polyvinyl alcohol membranes[J].Separation and Purification Technology, 2011, 81(2): 159-173.
  • 8Destaye A G, Lin C K, Lee C K.Glutaraldehyde vapor crosslinked nanofibrous PVA mat with in situ formed silver nanoparticles [J].ACS Applied Materials & Interfaces, 2013, 5(11): 4745-4752.
  • 9Guo R L, Fang X, Wu H, et al.Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane[J].Journal of Membrane Science, 2008, 322(1): 32-38.
  • 10Chaudhri S G, Rajai B H, Singh P S.Preparation of ultra-thin poly (vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater[J].Desalination, 2015, 367: 272-284.

二级参考文献17

  • 1Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
  • 2Jason K. Holt, Hyung Gyu Park, Yinmin Wang, et al. Fast Mass Transport Through Sub-2- Nanometer Carbon Nanotubes [J]. Science, 2006, 312: 1034-1037.
  • 3Ben Corry. Designing Carbon Nanotube Membranes for Efficient Water Desalination[J]. J. Phys. Chem. B, 2008, 112 (5): 1427-1434.
  • 4Richard E. Kravatha, Joanna A. Davisa. Desalination of sea water by direct osmosis [J]. Desalination, 1975, 16: 151-155.
  • 5邓字.非加压式反向渗透法及其海水淡化:中国,CN92110710.2[P].199209-21.
  • 6G.W. Batchelder. Process for the demineralization ofwater: US, Patent 3,171,799[P]. 1965.
  • 7D.N. Glew, Process for liquid recovery and solution concentration: US, Patent 3,216,930[P]. 1965.
  • 8B.S. Frank, Desalination of Sea Water: US ,Patent 3,670,897 [P]. 1972.
  • 9M. Flynn, J. Fisher, B. Potential Mars Transit Systems [R]. Moffett Research Center, 1998. Borchers. An Evaluation of Vehicle Water Treatment Field, CA: NASA Ames.
  • 10J.O. Kessler, C. D. Moody. Drinking water from sea water by forward osmosis Desalination [C]. 1976. 297 306.

共引文献49

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部