摘要
以氢原子动态极化率的格林函数理论为基础,借助归纳法解决了该理论体系中所涉及的复杂微分算子的运算问题,导出了处于任一激发态的氢原子的多极动态极化率的解析表达式,从而解决了处于任意激发态的两个氢原子间的范德瓦尔斯相互作用色散系数的计算问题.作为本理论的应用,给出了氢原子n=4激发态的多极动态极化率的解析表达式,绘出了氢原子n=4激发态的电偶极、电四极和电八极极化率随光场频率变化的曲线图,计算了H(4s)-H(4s)体系的范德瓦尔斯相互作用色散系数.
Based on the Green funct ion theory of dynamic polarizability fo r hydrogen a tom , and w ith the aid of inductive method used to solve the complex differential operator involved in the th e o ry, an analytical expression for the multipole dynamic polarizabilities o f hydrogen atom in an a rb itra ry excited state is derived, so th a t the problem of calculating the van der Waals interaction dispersion coefficient between tw o excited hydrogen atoms is solved. As an application of the present th e o ry, the multipole dynamic polarizabilities o f hydrogen atoms in n = 4 excited state are calculated, typical results fo r dynamic dipole, quadrupole and octupole polarizabilities at real photon frequencies are shown in a series o f f igures. M e a nw h ile, the two-body dispersion coefficients fo r H (4s)- H (4s) system are computed.
出处
《安徽师范大学学报(自然科学版)》
CAS
2016年第5期437-440,共4页
Journal of Anhui Normal University(Natural Science)
基金
国家自然科学基金专项基金项目(11047019)
安徽省自然科学基金项目(11040606M15)
关键词
氢原子
激发态
多极动态极化率
色散系数
hydrogen
excited state
multipole dynamic polarizabilities
dispersion coefficients