期刊文献+

激发态氢原子间的相互作用色散系数

The Dispersion Coefficient of Atomic Hydrogen in the Excited States
下载PDF
导出
摘要 以氢原子动态极化率的格林函数理论为基础,借助归纳法解决了该理论体系中所涉及的复杂微分算子的运算问题,导出了处于任一激发态的氢原子的多极动态极化率的解析表达式,从而解决了处于任意激发态的两个氢原子间的范德瓦尔斯相互作用色散系数的计算问题.作为本理论的应用,给出了氢原子n=4激发态的多极动态极化率的解析表达式,绘出了氢原子n=4激发态的电偶极、电四极和电八极极化率随光场频率变化的曲线图,计算了H(4s)-H(4s)体系的范德瓦尔斯相互作用色散系数. Based on the Green funct ion theory of dynamic polarizability fo r hydrogen a tom , and w ith the aid of inductive method used to solve the complex differential operator involved in the th e o ry, an analytical expression for the multipole dynamic polarizabilities o f hydrogen atom in an a rb itra ry excited state is derived, so th a t the problem of calculating the van der Waals interaction dispersion coefficient between tw o excited hydrogen atoms is solved. As an application of the present th e o ry, the multipole dynamic polarizabilities o f hydrogen atoms in n = 4 excited state are calculated, typical results fo r dynamic dipole, quadrupole and octupole polarizabilities at real photon frequencies are shown in a series o f f igures. M e a nw h ile, the two-body dispersion coefficients fo r H (4s)- H (4s) system are computed.
出处 《安徽师范大学学报(自然科学版)》 CAS 2016年第5期437-440,共4页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金专项基金项目(11047019) 安徽省自然科学基金项目(11040606M15)
关键词 氢原子 激发态 多极动态极化率 色散系数 hydrogen excited state multipole dynamic polarizabilities dispersion coefficients
  • 相关文献

参考文献1

二级参考文献15

  • 1Tang A Z, Chan F T. Dynamic multipole polarizabil- ity of atomic hydrogen [J]. Phys. Rev. A, 1986, 33 : 3671.
  • 2Cebim M A, Masili M, De Groote J J. High preci- sion calculation of multipolar dynamic polarizabilities and two- and three-body dispersion coefficients of a- tomic hydrogen [J]. Few-Body Syst. , 2009, 46:75.
  • 3Leggett A J. Bose--Einstein condensation in the al- kali gases. Some fundamental concepts [J]. Rev. Mod. Phys. , 2001, 73:307.
  • 4Mitroy J, Bromley M W J. Higher-order C. disper- sion eoeffieents for the alkali-metal atoms [J-l. Phys. Rev. A, 2005, 71: 042701.
  • 5Thakkar A J. Higher dispersion coefficients. Accu- rate values for hydrogen atoms and simple estimates for other systems [J]. J. Chem. Phys. , 1988, 89: 2092.
  • 6Figari G, Magnasco V. A simple polynomial ap- proach to the exact perturbative evaluation of low-fre- quency dynamic polarizabilities for a ground-state hy- drogen atom [J]. Chem. Phys. Lett., 2001, 342: 99.
  • 7Figari G, Magnasco V. On the interpolation of fre- quency-dependent polarizabilities through a readily in- tegrable expression [J]. Chem. Phys. Lett. ,2003, 374 : 527.
  • 8Mitroy J, Bromley M W J. Higher-order C, disper- sion coefficients for hydrogen [J]. Phys. Rev. A, 2005, 71; 032709.
  • 9Masili M, Gentil R J. High-precision calculation of the dispersion coeffcients of ground-state hydrogen using a variationally stable approach [J]. Phys. Rev. A, 2008, 78:034701.
  • 10Gao B, Starace A F. Variational calculation of mul- tiphoton ionization processes for the H atom [J]. Phys. Rev. Lett. , 1988, 61:404.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部