期刊文献+

关于两类color有序分拆的一个恒等式

A identity about two classes of color compositions
下载PDF
导出
摘要 考虑了正整数n的有序分拆中,分部量1有两种形式的情形,发现正整数n的分部量1有两种形式的有序分拆数等于第2n+1个Fiboacci数F2n+1.进一步得到了一个涉及正整数n的分部量1有两种形式的有序分拆数与正整数的n-color有序分拆数之间的一个恒等式.并且给出了正整数n的分部量1有两种形式的有序分拆数的一个显式计数公式. In this paper, we considered the compositions with the part 1 has two kinds, and found that the number of compositions with the part 1 has two kinds equals the(2n + 1)^(th) Fibonacci number F2n+1. Furthermore, we obtained an identity between the number of compositions of n when part 1 can be of two kinds and the number of n-color compositions. And we also give an explicit counting formula of the number of compositions of n when part 1 can be of two kinds.
作者 郭育红
出处 《纯粹数学与应用数学》 2016年第5期441-447,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(11461020)
关键词 n-color有序分拆 Fibonacco数 恒等式 组合双射 n-color compositions the Fibonacci number identity combinatorial bijection
  • 相关文献

参考文献3

二级参考文献21

  • 1郭育红.与正整数的无序分拆和有序分拆相关的一些恒等式[J].数学学报(中文版),2007,50(3):707-710. 被引量:16
  • 2MacMahon P A. Combinatory Analysis [M]. New York: AMS Chelsea Publishing, 2001.
  • 3Agarwal A K,Andrews G E. Rogers-Ramanujan iden- tities for partition with " N copies of N'[J]. J Combin Theory A, 1987,45 (1) : 40-49.
  • 4Agarwal A K. n-colour compositions [J]. Indian J Pure Appl Math ,2000,31(11) :1421-1427.
  • 5Agarwal A K. An analogue of Euler' s identity and new Combinatorial properties of n-colour corn-Posi- tions[J]. J Computational and Applied Mathematics, 2003,160(1-2) : 9-15.
  • 6Guo Yuhong. Some identities between partitions and compositions [J]. Acta Mathematica Sinica Chinese Series, 2007 ,50(3) : 707-710.
  • 7Narang G,Agarwal A K. n-Colour self-inverse compo- sitions[J]. Proc Indian Acad Sci (Math Sci ) , 2006, 116(3) :257-266.
  • 8Narang G, Agarwal A K. Lattice paths and n-colour compositions [J]. Discrete Mathematics, 2008, 308: 1732-1740.
  • 9Guo Yuhong. n-colour even self-inverse compositions[J]. Proc Indian Acad Sci (Math Sci ), 2010,120 (1) : 27-33.
  • 10Andrews G E. Ramanujan' s "lost" notebook IV: Stacks and alternating partitions [J]. Adv in Math, 1984,53 : 55-74.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部