期刊文献+

方程φe(n)=n/d(e=1,2,4)的可解性 被引量:15

On the solvability of the equation φe(n) =n/d(e = 1, 2, 4)
下载PDF
导出
摘要 利用已有的广义欧拉函数的准确计算公式来研究方程φe(n)的可解性,其中n为正整数,d为n的正因子.并利用初等的方法和技巧给出方程φe(n)=n/d(e=1,2,4)的全部正整数解(n,d). In order to generalize Lehmer's congruences from modulo prime squares to modulo integer squares,Cai defined the generalized Euler function. The paper studies the solvability of the Diophantine equationφe(n) =nd(e = 1, 2, 4), where n is a positive integer and d is a positive factor of n. By the elementary methods and techniques, the solvability of the Diophantine equation φe(n) =ndrelated to the generalized the Euler function φe(n)(e = 1, 2, 4) is studied. And then all solutions for the Diophantine equation φe(n) =n/d(e = 1, 2, 4)are given.
作者 王容 廖群英
出处 《纯粹数学与应用数学》 2016年第5期481-494,共14页 Pure and Applied Mathematics
基金 国家自然科学基金重大项目(11401408) 四川省教育厅重点项目(142A0034) 四川省科技厅计划项目(2016JY0134)
关键词 广义欧拉函数 丢番图方程 正整数解 generalized Euler function Diophantine equation positive integer solution elementary method conjecture
  • 相关文献

参考文献6

二级参考文献48

  • 1Erdos P. On the normal number of prime factors of p-1 and some related problems concerning Euler function φ(n)[J]. Quart. J. Math., 1935,6:205-213.
  • 2Woolridge K. Values taken many times by Euler function φ(n)[J]. Proc. Amer. Math. Soc. 1979,76:229-234.
  • 3Carmichael R D. Note on Euler function φ(n)[J]. Bull. Amer. Math. Soc., 1922,28:109-110.
  • 4Zhang Tianping. An equation involving Euler function φ(n)[J]. Scientia Magna, 2008,4(1):109-112.
  • 5Tom M Apostol, Introduction to Analytic Number Theory[M]. New York: Springer-Verlag, 1976.
  • 6Frankel Y,Mackenzie P D,Yung M.Robust Efficient Distributed RSA-Key Generation[C] ∥ Proc of the 30th Annual ACM Symp on Theory of Computing,1998:663-672.
  • 7Lory P.Reducing the Complexity in the Distributed Computation of Private RSA Keys[C] ∥ Proc of Australasian Conf on Information Security and Privacy,2009:250-263.
  • 8Miyazaki S,Sakurai K,Yung M.On Threshold RSA-Signing with No Dealer[C] ∥Proc of the 2nd Int'l Conf on Information Security and Cryptology,1999:197-207.
  • 9Catalano D,Gennaro R,Halevi S.Computing Inverses over a Shared Secret Modulus[C] ∥ Proc of EUROCRYPT'00,2000:190-206.
  • 10Cachin C.Rational Protocols[C] ∥Proc of iNetSec 2009-Workshop on Open Research Problems in Network Security,2009:93-94.

共引文献127

同被引文献65

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部