期刊文献+

铁路网检衡车组作业站点序列优化模型及算法 被引量:2

Optimization Model and Algorithm for Operation Site Sequence of Track Scale Test Cars in Railway Network
下载PDF
导出
摘要 为合理确定检衡车组进行检定作业时的运行径路,提高检衡车组的运用效率,基于运筹学中单旅行商问题(TSP)的求解思路,以检衡车组在所负责子区域路网内的广义走行时间最小化为优化目标函数,首先构建单组检衡车作业站点序列优化模型,并设计基于改进粒子群算法的模型求解方法;在此基础上,结合多组检衡车担当同一路网内作业站点轨道衡和超偏载检测装置检定作业的实际路情,建立多组检衡车作业站点序列优化模型,将多组检衡车的运行径路优化类比为多旅行商问题(MTSP),通过设置虚拟弧费用将其转化为TSP问题,从而实现多组检衡车作业站点序列优化模型的求解。以哈尔滨铁路局管内路网的检衡车组作业站点序列优化为例,验证了模型和算法的有效性。 In order to optimize operation routes and improve the operation efficiency of track scale test cars,a model for optimizing the operation site sequence of single test car was constructed based on traveling salesman problem(TSP)in operational research with the objective of minimizing the total generalized running time in given regional network and a solution method for the model was proposed based on particle swarm optimization algorithm.On this basis,another model for optimizing the operation site sequence of multiple track scale test cars was constructed with the consideration of the actual condition that more than one track scale test cars were in charge of verification operations for such detection devices as track scale as well as overload and unbalanced load in the same network simultaneously.The optimization of the operation routes of multiple track scale test cars were taken as Multiple Traveling Salesman Problem(MTSP),then it was transformed into TSP by setting the cost of virtual arcs,so as to realize the optimal solution of the model for optimizing the operation site sequence of multiple track scale test cars.At last,an example of operation site sequence optimization for track scale test cars in the network of Harbin Railway Administration was given;the effectiveness of the proposed models and algorithms was validated.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2016年第5期132-137,共6页 China Railway Science
基金 铁道科学技术研究发展中心科研计划项目(J2014D001)
关键词 检衡车组 作业站点序列 运用计划 广义走行时间 运筹学 粒子群算法 虚拟弧费用 Track scale test cars Operation site sequence Scheduling Generalized running time Operational research Particle swarm optimization Cost of virtual arc
  • 相关文献

参考文献9

二级参考文献35

  • 1王向军,向东,蒋涛,林春生,龚沈光,方兴.一种双种群进化规划算法[J].计算机学报,2006,29(5):835-840. 被引量:24
  • 2刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49
  • 3Bergh F,Engelbrecht A P. A cooperative approach to particle swarm optimization [ J ]. IEEE Trans. on Evolutionary Computa- tion ,2004,8 (3) :225 -239.
  • 4Hong Y L,Chen G L,Guo W Z. A new particle swarm opti- mization for TSP [ C]//Proceedings of 2006 Asian Fuzzy Systems Society International Conference. Hebei, China, 2006:297-301.
  • 5Ray T, Liew K M. A swarm metaphor for multiobjective de- sign optimization [ J ]. Engineering Optimization, 2002,34 (2) :141-153.
  • 6Arumugam M S, Rao M V C, Chandramohan A. A new and improved version of particle swarm optimization algorithm with global-local best parameters [ J ]. Knowledge and Infor- mation Systems,2008,16(3) :324-350.
  • 7Storn R, Price K. Differential Evolution:A Simple and Effi- cient Adaptive Scheme for Global Optimization over Contin- uous Spaces[ EB/OL]. http ://citeseerx. ist. psu. edu/view- doc/summary? doi = 10.1.1.1. 9696,2009-10-10.
  • 8Salman A, Ahmad I. Particle swarm optimization for task as- signment problem [ J ]. Microprocessors and Microsystems, 2002,26 ( 8 ) : 363-371.
  • 9Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [ J ]. Natural Computing, 2002,12 ( 1 ) : 235-306.
  • 10I Eberhart R C,Shi Y H. Particle swarm optimization:Develop- ment applications and resources [ C ]//Proc. Congress on Evo- lutionary Computation 2001. Piscataway ,USA,2001:81-86.

共引文献128

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部