期刊文献+

基于压缩感知的自适应导频信道估计 被引量:1

Adaptive Pilot Channel Estimation Based on Compressive Sensing
下载PDF
导出
摘要 在无线通信系统中,如何提升信道估计的准确度对提升无线通信的系统性能至关重要。在信道估计中,导频开销占据了较多的频谱资源,且传统的信道估计算法不能根据信道状态实时调整信道估计中所需要的导频数量。而压缩感知信道估计算法,可以利用无线信道的稀疏特性,提高信道估计的精确度,减少导频子载波的开销。基于此特点,将压缩感知与信道估计相结合,研究了基于压缩感知的稀疏度未知情况的信道估计,并提出一种适用于LTE-A系统的导频自适应信道估计算法。仿真结果表明:与传统的LS信道估计和LMMSE信道估计相比,所提出的导频自适应算法能够将导频数量减少40%左右,并能获得更准确的信道估计性能。 In wireless communication system, how to improve the accuracy of channel estimation is very important for improvement of the performance for wireless communication system. In the channel estimation, the pilot overhead occupies a large amount of spectrum resources,and the traditional channel estimation algorithm cannot adjust the pilot channel estimation according to the channel state. The compressed sensing channel estimation algorithm, taking advantage of the sparse characteristic of wireless channel, improves the accuracy of channel estimation and decreases the pilot overhead. Based on these features ,combined compressive sensing with channel estimation, investigating channel estimation with unknown channel sparsity based on compressive sensing, an adaptive pilot channel estimation algorithm is put forward for LTE-Advanced systems. Simulation shows that compared with the traditional LS and LMMSE,it can reduce the number of pilot by 40% and obtain more accurate channel estimation performance.
作者 孙君 高杰
出处 《计算机技术与发展》 2016年第10期184-187,共4页 Computer Technology and Development
基金 国家"863"高技术发展计划项目(2005AA121620 2006AA01Z232) 江苏省普通高校研究生科研创新计划资助项目(CX07B_110z) 南邮校级项目(NY211033)
关键词 压缩感知 信道估计 自适应 导频 compressive sensing channel estimation adaptive pilot
  • 相关文献

参考文献14

  • 1Ghassemi A, Ghasemnezad H, Gulliver T A. Compressive sens- ing based estimation of OFDM nonlinear distortion [ C ]//Proc of 2014 IEEE international conference on communication. [ s.1. ] : IEEE ,2014:5055-5059.
  • 2赵竞,王玲.压缩感知理论在OFDM稀疏信道估计中的应用[J].通信技术,2012,45(3):13-15. 被引量:2
  • 3张继东,郑宝玉.基于导频的OFDM信道估计及其研究进展[J].通信学报,2003,24(11):116-124. 被引量:95
  • 4王东明,高西奇,尤肖虎,韩冰.宽带MIMO-OFDM系统信道估计算法研究[J].电子学报,2005,33(7):1254-1257. 被引量:21
  • 5Hoeher P, Kaiser S, Robertson P. Two-dimensional pilot sym- bol aided channel estimation by Wiener filtering[ C ~//Proe of IEEE international conference on acoustics, speech, and signal processing. [ s. 1. ] : IEEE, 1997 : 1845-1848.
  • 6于华楠,郭树旭.基于压缩感知的超宽带信道估计方法的研究[J].电子与信息学报,2012,34(6):1452-1456. 被引量:12
  • 7焦东立,朱立东.一种基于压缩感知的信道估计算法[J].空间电子技术,2011,8(3):16-19. 被引量:3
  • 8Taubock G, Hlawatsch F, Eiwen D, et al. Compressive estima- tion of doubly selective channels in multicarrler systems: leakage effects and sparsity enhancing processing [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2) : 255-271.
  • 9Do T T, Lu G, Nguyen N,et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ C ]//Proc of 2008 42nd Asilomar conference on signals, systems and computers. CA, Pacific Grove : [ s. n. ] ,2008.
  • 10Applebaum L, Bajwa W U, Calderbank A R, et al. Determinis- tic pilot sequences for sparse channel estimation in OFDM systems[C]//Proc of 2011 17th international conference on digital signal processing. Corfu: [ s. n. ] ,2011.

二级参考文献161

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献994

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部