期刊文献+

一类扩散型捕食—食饵模型非常值正稳态解的不存在性

Nonexistence of Non-constant Positive Stationary Solution for a Diffusive Prey-predator Model
下载PDF
导出
摘要 研究了一类扩散型捕食-食饵模型非常值正稳态解的不存在性问题。该模型能够用来描述处于异构环境中的两个种群的生存状态。利用极值原理和迭代技巧,给出了该模型不存在非常值正稳态解的一个充分条件。这个结果是对该模型理论研究的一个补充。 The nonexistence of positive stationary solution for a prey-predator model with diffusion is studied.The model can be used to describe the survival state of two species in heterogeneous environments.By means of the maximum principle and iterative technique,a sufficient condition for the nonexistence is given.This result complements some previous results on the model.
出处 《大连民族大学学报》 2016年第5期492-495,共4页 Journal of Dalian Minzu University
基金 国家自然科学基金项目(11571062) 辽宁省高等学校杰出青年学者成长计划(LJQ2013124) 中央高校基本科研业务费专项资金资助项目(DC201502050202)
关键词 捕食-食饵模型 稳态解 迭代技巧 prey-predator model stationary solutions iterative technique
  • 相关文献

参考文献10

  • 1COURCHAMP F, SUGIHARA G. Modelling the biologi- cal control of an alien predator to protect island species from extinction [J]. Ecological Applications, 1999,9 : 112 - 123.
  • 2MURRAY J D. Mathematical Biology[M]. 3rd ed. Ber- lin : Biomathematics Series, Springer Verlag, 2002.
  • 3WANG M X. Spreading and vanishing in the diffusive prey -predator model with a free boundary[J]. Commu- nications in Nonlinear Science and Numerical Simula- tion, 2015, 23(1): 311-327.
  • 4WANG M X, ZhAO Y G. A semilinear parabolic system with a free boundary [J]. Zeitschrift ftir angewandte Mathematik und Physik, 2015, 66 (6) : 3309 - 3332.
  • 5GAUCEL S, PONTIER D. How predator food preference can change the destiny of native preys in predator- prey systems[J]. Biological Invasion, 2005, 7 : 795 - 806.
  • 6CHEN W, WANG M. Qualitative analysis of predator - prey models with Beddington - DeAngelis functional re- sponse and diffusion [J]. Math Computer Modelling, 2005, 42 : 31 - 44.
  • 7GAUCEL S, LANGLASI M PONTIER D. Invading intro- duced species in insular hereto - geneous environments [J]. Ecological Modelling, 2005, 18:62-75.
  • 8GAUCEL S. Some remarks on a singular reaction - diffu- sion system aring in predator- prey modeling [J]. Dis- crete and Continuous Dynamical System, Series B, 2007, 8(1) : 61 -72.
  • 9DU Y H, HSU S B, A diffusive predator - prey model in heterogeneous Environment [J]. J Differential Equa- tions, 2004, 203:331-364.
  • 10LOU Y, NI W M. Diffusion, self- diffusion and cross - diffusion[J]. Journal of Differential Equations, 1996, 131 : 79 - 131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部