期刊文献+

受限高浓度电解质溶液的电动力学输运

Electrokinetics transport of confined electrolyte solution in high concentration
下载PDF
导出
摘要 为了解释有关纳米通道内离子输运特性的一系列违反经典流体力学和电迁移理论的实验现象的内在机理,通过分子动力学模拟的方法,研究了受限高浓度Na Cl溶液的离子电流和迁移率等电动力学输运特性.结果显示,跨膜电压和接入电阻是导致单层石墨烯纳米孔的离子电流随孔径呈线性增长的重要原因.受限电解质溶液与体态溶液的本质区别是除了固液界面的边界效应外,跨膜电压造成的局部超大电场将导致电迁移速率随电场强度增加出现非线性增长的Wien效应.同时,离子迁移率随溶液浓度升高而下降.产生这些变化的微观机理除了离子氛屏蔽效应外,还有离子对形成和离子碰撞等离子间微观相互作用. To explain the mechanism of ion transport in nanochannel behind a series of phenomena which can not be explained by classical fluid mechanics and electrical transport theory,by all-atom molecular dynamics( MD) simulations,ionic current and ion mobility as well as other electrokinetics transport properties of confined sodium chloride solution are investigated. The results indicate that transmembrane voltage and access resistance have a significant contribution to the linear growth of the ionic current of monolayer graphene nanopore with pore diameter increasing. The essential difference between confined electrolyte solution and bulk solution is that despite the boundary effect on solid-liquid interface,ultra-high localized electrical field caused by transmembrane voltage leads to the Wien effect,that is,ion mobility nonlinearly increases with electrical field rising. Furthermore,the ion mobility decreases as the bulk concentration increases. In addition to the ionic atmosphere effect,the microscopic mechanism is the interaction between ions including ion pair formation and the ion-ion collisions.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期972-976,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51435003,51375092) 重庆市教委科学技术研究资助项目(KJ1401030) 东南大学优秀博士学位论文培育基金资助项目(KYLX_0100) 江苏省普通高校学术学位研究生创新计划资助项目(YBJJ1540)
关键词 受限电解质溶液 纳米孔 分子动力学模拟 迁移率 confined electrolyte solution nanopore molecular dynamics simulation mobility
  • 相关文献

参考文献13

  • 1Thomas M, Corry B, Hilder T A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? [J]. Small, 2014, 10(8): 1453-1465. DOI:10.1002/smll.201302968.
  • 2Jain T, Rasera B C, Guerrero R J, et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores[J]. Nature Nanotechnology, 2015, 10(12): 1053-1057. DOI:10.1038/nnano.2015.222.
  • 3Kaufman I K, McClintock P V E, Eisenberg R S. Coulomb blockade model of permeation and selectivity in biological ion channels[J]. New Journal of Physics, 2015, 17(8): 083021. DOI:10.1088/1367-2630/17/8/083021.
  • 4Agmon N. The Grotthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5): 456-462. DOI:10.1016/0009-2614(95)00905-j.
  • 5Lee C Y, Choi W, Han J H, et al. Coherence resonance in a single-walled carbon nanotube ion channel[J]. Science, 2010, 329(5997): 1320-1324. DOI:10.1126/science.1193383.
  • 6Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. DOI:10.1038/nnano.2010.233.
  • 7Suk M E, Aluru N R. Ion transport in sub-5-nm graphene nanopores[J]. Journal of Chemical Physics, 2014, 140(8): 084707. DOI:10.1063/1.4866643.
  • 8Haynes W M. CRC handbook of chemistry and physics[M]. 91st ed. Boca Raton, Florida, USA:CRC Press, 1989:613.
  • 9Hyun C, Rollings R, Li J. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip[J]. Small, 2011, 8(3): 385-392. DOI:10.1002/smll.201101337.
  • 10Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部