期刊文献+

采用聚类特征的基本概率分配生成方法及应用 被引量:4

A Method to Generate Basic Belief Assignment Based on Clustering Analysis and Its Application
下载PDF
导出
摘要 针对在识别框架不确定时基本概率分配(BBA)生成困难的问题,提出一种基于聚类特征的基本概率分配生成方法,以减弱对样本长度的依赖性,并分析2种情况下的BBA生成。在框架未知时,通过聚类分析获得各个类别的聚类特征,建立样本属性的聚类特征区间模型;在框架已知时,获取聚类特征,建立样本属性的聚类特征区间模型;然后用各个区间模型之间的距离表示样本属性之间的差异,在此基础上建立了一种相似度的度量方法;最后对相似度进行归一化得到BBA。采用Iris数据集和Wine数据集的实验结果表明:所提方法对样本长度敏感程度低,对Wine数据集的一个类的分类结果达到100%。将该方法应用于某煤化工企业压缩机组子系统状态监测信息数据集,实现了监测信息状态的识别。 A method to generate BBA (basic belief assignment) based on cluster analysis is proposed to focus the problem that the mass function is hard to determine when the frame is unknown. The method tackles the situation whether the frame of discernment is known or not. A clustering analysis method is applied to extract cluster features and models of cluster features are constructed with the samples. Then the distances between different cluster feature models are calculated to represent differences between sample attributes and then the similarities of them are obtained. Finally, the values of similarities are normalized to get the BBA. The analysis results of classifying the Iris dataset and Wine dataset show that the proposed method is less dependent on the length of samples and the classification accuracy in Wine dataset is 100%. Monitoring information series by applying the method to a compressor unit system proves the effectiveness of the method, and the condition of monitoring information can be clearly recognized.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第10期8-14,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51375375)
关键词 证据理论 基本概率分配 聚类特征区间模型 相似度 信息融合 evidence theory basic belief assignment cluster feature interval model similarity information fusion
  • 相关文献

参考文献7

二级参考文献86

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2刘明,袁保宗,唐晓芳.证据理论k-NN规则中确定相似度参数的新方法[J].电子学报,2005,33(4):766-768. 被引量:8
  • 3万继宏,刘后铭.一种高性能目标识别融合算法[J].电子科技大学学报,1995,24(2):137-142. 被引量:27
  • 4邓勇,朱振福,钟山.基于证据理论的模糊信息融合及其在目标识别中的应用[J].航空学报,2005,26(6):754-758. 被引量:63
  • 5Chen S. New methods for subjective mental workload assessment and fuzzy risk analysis [ J ]. Cybernetics and Systems, 1996,27(5) :449 - 472.
  • 6Chen S-J, Chen S-M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2003,11 (1) .45 - 56.
  • 7H S Lee. An optimal aggregation method for fuzzy opinions of group decision[ A]. IEEE lnt Conf on SMC, vol. 3[C]. Tokyo, Japan, 1999.314 - 319.
  • 8Wei S-H, Chen S-M. A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[ J] . Expert Systems with Applications, 2009,36(1) : 581 - 588.
  • 9Chen S-H. Ranking generalized fuzzy number with graded mean integration[ A]. proc of the eighth int fuzzy systems association world congress, vol. 2[ c ]. Taipei, Taiwan, Republic of China, 1999. 899 - 902.
  • 10Parikh C, Pont M, Barrie Jones N. Application of Dempstersharer theory in condition monitoring applications: a case study [ J ]. Pattern Recognition Letters, 2001,22 (6 - 7) : 777 - 785.

共引文献458

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部