期刊文献+

面向医疗大数据的云雾网络及其分布式计算方案 被引量:28

A Cloud and Fog Network Architecture for Medical Big Data and Its Distributed Computing Scheme
下载PDF
导出
摘要 针对云计算应用于医疗大数据场景时存在业务处理时延较高的问题,提出了一种基于边缘计算的新型云/雾混合网络架构,该架构利用医院中的路由器或交换机等边缘设备,在云服务器与医疗检测设备之间构建一个雾计算层,通过将云服务器中的医学影像等医疗大数据分析结果主动缓存至雾计算设备,并与雾设备上来自医疗检测终端的数据进行对比计算,得出诊断结果,达到降低业务处理时延的目的。考虑到边缘设备的计算能力较弱,进一步提出了一种多设备分布式计算方案,利用带约束的粒子群优化负载均衡(CPSO-LB)算法,达到任务处理时延最小的目标。仿真结果表明:基于CPSO-LB算法的云/雾混合网络能有效地降低医疗数据处理时延;当采用10个雾计算设备,处理的医疗数据量在6-10Gb时,与云计算网络相比时延性能提升了50.95%-37.37%。 A novel hybrid cloud and fog network architecture based on edge computing is proposed to solve the problem of high processing latency of the medical big data in cloud computing network. The architecture adds a fog computing layer between cloud servers and medical measurement devices by using edge devices such as routers or switches in a hospital. Fog computing devices proactively cache analysis results of medical images and other medical big data from cloud servers, and compare these data with the data from medical measurement devices to get the diagnostic results and reduce processing latency. Meanwhile, a multi device distributed computing scheme is proposed by considering the weak computing power of edge devices and a constrained particle swarm optimization load balancing (CPSO-LB) algorithm is applied to minimize the latency. Simulation results indicate that the novel network architecture with CPSOLB algorithm decreases the latency effectively. A comparison with a cloud computing shows that it's latency performance increases by 50.95%-37.37% when 10 fog devices and processing 6-10 Gb medical data are used.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第10期71-77,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61401331) 港澳台科技合作专项资金资助项目(2015DFT10160) 中央高校基本科研业务费专项资金资助项目(20101155739)
关键词 医疗大数据 云计算 云/雾混合网络 负载均衡 medical big data cloud computing hybrid cloud/fog network load balancing
  • 相关文献

参考文献5

二级参考文献45

  • 1王娟,沈小平,叶萌.云计算在医疗卫生职业教育信息化发展中的应用探索[J].微型电脑应用,2011(3):42-44. 被引量:5
  • 2黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005,22(1):113-117. 被引量:25
  • 3Dahlin M.Interpreting Stale Load Information[C].In:Proc of the 19th Intl Conf on Distributed Computing Systems, 1999-05
  • 4Mitzenmacher M.How Useful is Old Information[C].In:Proc of the 15th Annual ACM
  • 5Cenova Z,Christensen K J.Chanllenges In :URL Switching for Implementing Globally Distributed Web Sites[C].In:Proc of the Workshop on Scalable Web Services,2000-08:89~94
  • 6[2]Powell D,Skolnick M.Using genetic algorithms in engineering design optimization with non-linear constraints[C]//Proceedings of the Fifth International Conference on Genetic Algorithms.San Francisco,CA,USA:Morgan Kaufmann Publishers,1993:424-431.
  • 7[3]Michalewicz Z.Evolutionary computation techniques for nonlinear programming problems[J].International Transactions in Operational Research,1994,1(2):240.
  • 8[4]Schnecke V,Vornberger O.Hybrid genetic algorithms for constrained placement problems[J].IEEE Trans-actions on Evolutionary Computation,1997,1(4):277.
  • 9[5]Kennedy J,Eberhart R,Shi Y.Swarm intelligence[M].San Francisco,CA,USA:Morgan Kaufmann Pub-lisher,2001:287-300.
  • 10[6]Coath G,Halgamuge S K.A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems[C]//Proceedings of 2003 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,2003:2419-2425.

共引文献196

同被引文献223

引证文献28

二级引证文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部