期刊文献+

基于模板匹配的新闻图像字幕行切分算法 被引量:2

News Image Caption Line Segmentation Algorithm Based on Template Matching
原文传递
导出
摘要 针对新闻图像中水平字幕行的字符切分问题,为了克服已有基于单字符切分方法造成的字符分裂问题,利用字幕行中字符的分布规律构造了响应函数,从而将字符切分问题转变为响应函数的最优值问题,最后基于优化结果进行字符切分.该算法主要包括两部分:首先,利用垂直投影直方图确定单个字符的粗略宽度,并根据该值构造一个可变长模板;然后,构造模板响应函数,根据不同长度模板的最优响应函数值确定单个字符的左右边界位置;最后输出切分结果.实验结果表明,对于粘连/非粘连字符图像,该算法均能获得较好的实验结果. The research on the character segmentation of the horizontal caption line in news images was made in this article. In order to overcome the character splitting problem caused by existing single character based segmentation methods,a response function was proposed based on character distribution. The character segmentation problem is converted into an optimal problem,and the character segmentation can be attained by turning to the optimal result. The algorithm mainly contains two parts: First,the rough width of a single character is determined based on the vertical projection histogram,which is utilized to construct a variable length template; Then,the template response function is constructed and the left /right boundary position of a single character is determined by the optimal value of the response function of different length templates; Last,output the segmentation results. Experimental results show that the proposed method can obtain satisfactory results for adhesion / non-adhesion character images.
作者 王志衡 郭超 刘红敏 WANG Zhi-heng GUO Chao LIU Hong-min(College of Computer Science and Technology, Henan Polytechnic University, Henan Jiaozuo 454000, Chin)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第3期49-53,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61572173 61472119 61472373 61272394) 河南省高校创新科技人才项目(13HASTIT039) 河南理工大学创新型科研团队项目(T2014-3) 河南理工大学杰出青年基金项目(J2013-2)
关键词 新闻图像 标题字幕 模板匹配 字符切分 news images captions template matching character segmentation
  • 相关文献

参考文献7

  • 1Yan Jianqiang, l.i Jie, Gao Xinbo. Chinese text location under complex background using Gabor filter and SVM [J]. Netlrocomputing, 2011, 74(17): 2998-3008.
  • 2Shivakumara P, Bhowmiek .S, Su B, et al. A new gradi- ent based character segmentation method for video text recognition[ C] //International Conference on Document Analysis and Recognition. Beijing: IEEE, 2011 : 126-130.
  • 3Huang Xiaodong, Ma Huadong, Zhang He. A new video text extraction approach [ C ]//International Conference on Multimedia and Expo. Cancun, Mexico: IEEE, 2009: 650-653.
  • 4Sharma N, Shivakumara P, Pal U, et al. A new method for character segmentation from multi-oriented video words [ C ] //International Conference on Document Analysis and Recognition. Washington, DC, USA: IEEE, 2013: 413-417.
  • 5Huang Liangkai, Wang Maoiun. Image thresholding by minimizing the measures of fuzziness [ J]. Pattern Recog- nition,1995,28(1):41-51.
  • 6宋砚,刘安安,张勇东,林守勋.基于聚类的视频字幕提取方法[J].通信学报,2009,30(2):136-140. 被引量:10
  • 7Phan T Q, Shivakumara P, Lu S, et al. A gradient vec- tor flow-based method for video character segmentation [ C ] //International Conference on Document Analysis and Recognition. Beijing, China: IEEE, 2011: 102d- 1028.

二级参考文献10

  • 1JAIN A K, YU B. Automatic text location in images and video frames[J]. Pattern Recognition, 1998, 31 ( 12):2055-2076.
  • 2KIM K I, JUMG K, KIM H. Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J]. IEEE Transaction on PAMI, 2003, 25( 12): 1631-1639.
  • 3WU V, MANMATHA R, RISEMAN E M. Textfinder: an automatic system to detect and recognize text in images[J]. IEEE Transaction on PAMI, 1999, 21(11): 1224-1229.
  • 4OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transaction on Systems, Man and Cybernetics, 1979, 9(1):62-66.
  • 5XI J HUA X S, CHEN X R, et al. A video text detection and recognition system[A]. Proceedings of IEEE International Conference on Multimedia Expo[C]. Tokyo, Japan, 2001.873-876.
  • 6SATO T, KANADE T, HUGHES E, et al. Video OCR for digital news archives[A], Proceedings of IEEE Workshop on Content-Based Access of Image and Video Database[C]. India, 1998.52-60.
  • 7SOBEL I. Machine Vision for Three-Dimensional Scenes[M]. Orlando, USA, Academic Press, 1990. 376-379.
  • 8LYU M R, SONG J Q, CAI M. A comprehensive method for multilingual video text detection, localization, and extraction[J]. IEEE Transaction on Circuits and Systems for Video Technology, 2005, 15(2):243-255.
  • 9WERNICKE A, LIENHART R. On the segmentation of text in videos[A]. Proceedings of IEEE International Conference on Multimedia Expo[C]. New York, USA, 2000.
  • 10YE Q X, HUANG Q H, GAO W, et al. Fast and robust text detection in images and video frames[J]. Image and Vision Computing, 2005, 23(6): 565-576.

共引文献9

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部