期刊文献+

面向WSN的稀疏核学习机分布式训练方法

A Distributed Training Method for Sparse Kernel Machine over WSN
原文传递
导出
摘要 针对无线传感器网络(WSN)中,经过多跳路由传输训练数据到数据中心进行集中式训练时存在的高数据通信代价问题,基于L1正则化的稀疏特性,研究了仅依靠邻居节点间的协作,在网内分布式协同训练核最小均方差(KMSE)学习机的方法.首先,在节点模型与邻居节点间局部最优模型对本地训练样本预测值相一致的约束下,利用并行投影方法和交替方向乘子法对L1正则化KMSE的优化问题进行稀疏模型求解;然后,当各节点收敛到局部稳定模型时,利用平均一致性算法实现各节点稀疏模型的全局一致.基于此方法,提出了基于并行投影方法的L1正则化KMSE学习机的分布式(L1-DKMSE-PP)训练算法.仿真实验结果表明,L1-DKMSE-PP算法能够得到与集中式训练算法相当的预测效果和比较稀疏的预测模型,更重要的是能显著降低核学习机训练过程中的数据通信代价. In wireless sensor network( WSN),the centralized learning method by transmitting all training samples scattered across different sensor nodes to a centralized data center to train classifier will significantly increase the communication cost. To decrease the communication cost in transmitting training samples,a distributed learning method for kernel minimum squared error( KMSE) by incorporating L1 regularized term was studied,which just relies on in-network processing between single-hop neighboring nodes. Each node obtains its local optimum sparse model by constructing the optimization problem of L1 regularized KMSE based on its local training samples and solving it using parallel projections and alternating the direction method of multipliers,then a consistent model is achieved on all nodes by using the global average consensus algorithm. For carrying out this method,a new distributed training algorithm for L1-regularized kernel minimum squared error based on parallel projections( L1-DKMSE-PP) was proposed. Simulations show that L1-DKMSE-PP can obtain almost the same prediction accuracy as that of the centralized counterpart and a sparser model,and more importantly,it can significantly reduce the communication cost.
作者 及歆荣 侯翠琴 侯义斌 JI Xin-rong HOU Cui-qin HOU Yi-bin(Beijing Engineering Research Center for IOT Software and Systems, Beijing University of Technology, Beijing 100124, China School of Information and Electrical Engineering, Hebei University of Engineering, Hebei Handan 056038, China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第3期80-84,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金青年基金项目(61203377)
关键词 无线传感器网络 核学习机 分布式学习 L1正则化 并行投影方法 交替方向乘子法 wireless sensor network kernel machine distributed learning L1-regularized parallel projection alternating direction method of multipliers
  • 相关文献

参考文献8

  • 1Taghvaeeyan S, Rajamani R. Portable roadside sensors for vehicle counting, classification, and speed measure- ment [ J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15:73 -83.
  • 2韩屏,李方敏,罗婷.无线移动传感器网络的分布式目标跟踪算法[J].北京邮电大学学报,2009,32(1):90-94. 被引量:3
  • 3Scholkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization and beyond [M]. England: The MITPress, 2002: 61-118.
  • 4Predd J B, Kulkarni S R, Poor H V. A collaborative training algorithm for distributed learning [ J ]. IEEE Transactions on Information Theory, 2009, 55 (4) : 1856- 1870.
  • 5Flouri K, Beferull-Lozano B, Tsakalides P. Optimal gos- sip algorithm for distributed consensus SVM training in wireless sensor networks[ C ]//DSP 2009. Santorini-Hel- las: IEEE, 2009: 886-891.
  • 6Lu Yumao, Roychowdhury V, Vandenberghe L. Distribu- ted parallel support vector machines in strongly connected networks [ J ]. IEEE Transactions on Neural Networks, 2008, 19(7): 1167-1178.
  • 7及歆荣,侯翠琴,侯义斌.无线传感器网络下线性支持向量机分布式协同训练方法研究[J].电子与信息学报,2015,37(3):708-714. 被引量:7
  • 8Boyd S, Parikh N, Chu E. Distributed optimization and statistical learning via the alternating direction method of muhipliers [ J ]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.

二级参考文献9

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2Chen Huimin, Kirubarajan T, Bar-Shalom Y. Performance limits of track-to-track fusion versus centralized estimation: theory and application [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (2) : 386-400.
  • 3Chang Kuochu, Tian Zhi, Saha R K. Performance evaluation of track fusion with information matrix filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 455-466.
  • 4Fong L W. Distributed data fusion algorithms for tracking a maneuvering target [C]//The 10^th International Conference on Information Fusion. Quebec: [s. n. ], 2007 : 1-8.
  • 5Bans P, Khan N, Little T D C. A mobility based metric for clustering in mobile Ad hoe networks[C] //Proceedings of International Conference on Distributed Computing Systems Workshop. Phoenix: [s. n.], 2001: 413- 418.
  • 6Moon T K. The expectation-maximization algorithm[J]. Signal Processing Magazine, 1996, 13(6) : 47-60.
  • 7Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion [ C]//Proceedings of 44^th IEEE Conference on Decision and Control, and 2005 European Control Conference. Seville: [ s. n. ], 2005 : 6698-6703.
  • 8Coates M. Distributed particle filtering for sensor networks[C]//Proceedings of IEEE/ACM Int. IPSN2003. Berkeley: Springer, 2004: 99-107.
  • 9吕方旭,张金成,郭相科,王泉.基于WSN的战场声目标多特征联合智能分类识别[J].科学技术与工程,2013,21(35):10713-10721. 被引量:4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部