期刊文献+

自适应非线性流采样算法的硬件实现

The Hardware Implementation of Adaptive Non-Linear Sampling Algorithm
原文传递
导出
摘要 针对自适应非线性流采样(DISCO)算法硬件实现面临的一系列挑战,设计了利于硬件处理的改进算法,采用多查找表结构和"归一化"方法进行处理,完成了正确性仿真和基于现场可编程门阵列(FPGA)平台的原型验证.实验结果表明,改进算法能够实现40 Gbit/s链路的线速每流统计,消耗FPGA上的硬件逻辑资源较少,并且平均相对误差和最大相对误差均与基准DISCO算法性能接近. In flow-based passive measurement of the Internet,the measurement of flow size and flow volume is a basic requirement. To resolve the contradiction of increasing network link speed and small-sized fast memory chipset,a non-linear sampling algorithm which is named discrete counting( DISCO),was proposed in related research work. In order to meet the need of wire-speed network traffic measurement,DISCO is suggested to be implemented by hardware approaches,such as field-programmable gate array( FPGA). However,DISCO involves complex calculations with high precision,which give rise to a series of challenges in hardware acceleration. To solve the problems,a hardware-friendly refined algorithm was designed,which employs multiple lookup tables and a normalization method. Simulation was conducted to verify the validity of the refined algorithm. An FPGA-based prototype was made. Experiments show that the refined algorithm can achieve wire-speed flow measurement of a 40 Gbit / s link,with small hardware logic resources consumption of FPGA. The average relative error and maximum relative error of the refined DISCO algorithm are close to the original one.
作者 黎阳 武昊 刘斌 LI Yang WU Hao LIU Bin(Department of Computer Science and Technology,Tsinghua University, Beijing 100084, China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第3期85-90,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划(863计划)项目(2013AA013502) 国家自然科学基金项目(61373143 61432009) 教育部博士点基金项目(20131019172)
关键词 网络流测量 现场可编程门阵列 非线性流量测量 flow measurement field-programmable gate array non-linear sampling
  • 相关文献

参考文献7

  • 1Hu Chengchen, Wang Sheng, Tian Jia, et al. Accurate and efficient traffic monitoring using adaptive non-!.inear sampling method [ C ] //Proc of the IEEE INFOCOM 2008. Piscataway, NJ: IEEE, 2008 : 26-30.
  • 2Hu Chengchen, Liu Bin, Zhao Hongbo, et al. DISCO: memory efficient and accurate flow statistics for network measurement [ C]//Proc of the IEEE ICDCS 2010. Pis- cataway, NJ: IEEE, 2010: 665-674.
  • 3QDR Consortium. QDR technology and product family [EB/OL]. [ 2014-11-20 ]. http: // www. qdrconsor- tium. org/qdr-product-family, htm.
  • 4Estan C, Keys K, Moore D, et al. Building a better net- flow [ C ]// Proc of the ACM SIGCOMM 2004. New York: ACM, 2004: 245-256.
  • 5Ahera Corporation. Altera floating-point megafunctions user guide 11. 1 [ R]. San Jose, CA: Altera Corpora- tion, 2011.
  • 6The cooperative association for internet data analysis. CAIDA Dataset [ EB/OL]. [ 2014-9-11 1. http://www. caid-a, org/data/.
  • 7Ahera Corporation. Altera Stratix IV E FPGA develop- ment kit [ EB/OL]. San Jose, CA: Altera Corporation, 2014(2014)[2014-11-20]. http://www, alter-a, corn/ products/devkits/altera/kit-stratix-iv-e, html.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部