期刊文献+

基于均值漂移的暗原色先验图像去雾算法 被引量:4

An image haze removal algorithm using dark channel prior based on mean shift
下载PDF
导出
摘要 暗原色先验去雾算法在单幅图像去雾方面效果明显,但该算法复杂度高、处理耗时长,针对该算法不足之处,文章对均值漂移算法进行适当改进后,将其引入暗原色先验去雾算法之中,并结合数学形态学的思想,提出一种新的高精度透射率快速计算技术和相应的去雾算法。通过改进的算法,有效解决了块状效应和光晕现象的问题。选取一系列雾天图像进行实验,分别采用主观观察评价和客观数据分析方法,结果表明文中所提出算法快速有效,并较好地恢复了图像细节,减少了色彩失真,同时改进算法处理效果与原算法基本一致,算法效率得到显著提高。 The image haze removal algorithm based on the dark channel prior has achieved a good result in removing the haze from foggy images ,but it has high computational complexity of transmission and is time consuming .In this paper ,the mean shift algorithm is improved properly and introduced into the image haze removal algorithm using the dark channel prior based on the ideas of mathematical morphology .Then a new kind of high precision transmission estimation algorithm is put forward .The block effect and halo effect can be eliminated effectively by using this method .A series of foggy ima‐ges are tested ,and by using the methods of subjective observation and objective data evaluation re‐spectively ,the proposed algorithm is proved to be quick and effective ,and is better in restoring image details and reducing the color distortion at the same time .The proposed algorithm has almost the same processing effect as the original algorithm and higher efficiency .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第9期1205-1210,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61075032) 中央高校基本科研业务费专项资金资助项目(2012HGCX0001) 合肥工业大学博士学位人员专项基金资助项目(JZ2014HGBZ0059)
关键词 图像去雾 暗原色先验 透射率估计 均值漂移 图像质量 形态学 image haze removal dark channel prior transmission estimation mean shift image quali-ty morphology
  • 相关文献

参考文献18

  • 1罗颖听.雾天低对比度图像增强方法的研究[D].天津:天津大学,2005.
  • 2汪荣贵,朱静,杨万挺,方帅,张新彤.基于照度分割的局部多尺度Retinex算法[J].电子学报,2010,38(5):1181-1186. 被引量:46
  • 3汪荣贵,张璇,张新龙,傅剑峰.一种新型自适应Retinex图像增强方法研究[J].电子学报,2010,38(12):2933-2936. 被引量:27
  • 4NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (6) :713-724.
  • 5NAYAR S K,NARASIMHAN S G. Vision in bad weather [C]//IEEE International Con{erenee on Computer Vision, Vol 2. [S. 1. ] . IEEE Computer Society, 1999 : 820-827.
  • 6SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003,42(3) : 511-525.
  • 7NARASIMHAN S G, NAYAR S K. Interactive ( de ) weathering of an image using physical models [C]//IEEE Workshop on Color and Photometric Methods in Computer Vision..in Conjunction with ICCV' 03. [S. I.:s. n. ],2003: 1387-1394.
  • 8FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics,2008,27(3) : 1-9.
  • 9TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[C]//Proceedings of the 12th IEEE International Conference on Computer Vi- sion. [S. 1. ] : IEEE, 2009 : 2201-2208.
  • 10HE Kaiming,SUN Jian,TANG Xiaoou. Single image haze removal using dark channel prior [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recog- nition. [S. 1. ]:IEEE, 2009; 1956-1963.

二级参考文献44

  • 1Gonzalez R C. Digital Image Processing[M]. Beijing: Publishing House of Electronics Industry,2003.59- 170.
  • 2E Land, J McCann. Lightness and retinex theory[J].Opt Soc Amer, 1971.61(1) : 1 - 11.
  • 3Rahman Z, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement[ J].IEEE Image Processing, 1996,3 :1003- 1006.
  • 4R Kimmel, M Elad, D Shaked, K Renato, I Sobel. A variational framework for Retinex[J] Ant J Comp Vision 2003,52(1):7- 23.
  • 5Li Tao, Vijayan Asari. Modified Luminance Based MSR for Fast and Efficient Image Enhancement[J].IEEE Applied Imagery Pattern Recognition,2003,4(3):174- 179.
  • 6Wen Wang, Bo Li, Jin Zheng, Shu Xian, Jing Wang. A Fast Multi-scale Retinex Algorithm for Color Image Enhancement [A ]. Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition[ C ]. Hong Kong, IEEE Proc, 2008.30 - 31.
  • 7M Jourlin, J C Pinoli. Logarithmic image processing[ J]. Acta Stereol, 1987,6:651 - 656.
  • 8M Jourlin, J C Pinoli. A model for logarithmic image processing [ J]. J. Microsc, 1988,149: 21 - 35.
  • 9M Jourlin, J C Pinoli. Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images [ J ]. Adv Image Electron Phys, 2001,115:129 - 196.
  • 10Karen A. Panetta. Human visual system-based image enhancement and logarithmic contrast measure[J]. IEEE Trans, 1997, 38(1) :451 - 462.

共引文献108

同被引文献24

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部