期刊文献+

模糊聚类支持向量机的区域空气PM_(2.5)浓度预报 被引量:1

Fuzzy Clustering Support Vector Machine for Predicting Regional PM_(2.5) Concentration
下载PDF
导出
摘要 在分析模糊C均值聚类算法与支持向量机回归的特点后,将二者结合,提出了模糊聚类支持向量机回归(FCM-SVR)算法,对空气中颗粒物浓度PM2.5进行预测.该方法首先利用模糊C均值聚类算法把一个复杂的数据集分成多个群体,再在每个群体上建立支持向量机回归(SVR)模型,然后进行集成,对区域空气的PM2.5浓度进行预测.预测结果分别与自组织竞争神经网络支持向量机回归(SOM-SVR)模型和单一的支持向量机回归(SVR)的结果进行比较.结果表明,FCM-SVR模型的预报准确率高于SOM-SVR模型和SVR模型. A fuzzy clustering support vector machine regression algorithm is proposed by analyzing and combining the characteristics of the fuzzy C-mean clustering algorithm and the support vector machine regression. The SVM is designed to forecast the particles density PM2.5 in the air. Firstly, a complex data set is separated and inserted into multiple groups using fuzzy C-mean clustering algorithm. Then the SVM regression model in each group is established. The integrated fuzzy clustering SVM regression is applied to forecast the PM2.5 in the local air. By comparing the predicted result with that of the self-organizing competitive neural network SVM regression model, as well as that of the single SVM regression model respectively, it is found that the predicted accuracy rate of the FCM-SVR is higher than that of the SOM-SVR model and SVR model.
出处 《宁波大学学报(理工版)》 CAS 2016年第4期56-60,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省自然科学基金(LY14F030004) 浙江省科技厅公益技术应用研究项目(2015C31017)
关键词 模糊C均值聚类 支持向量机回归 PM2.5浓度预测 fuzzy C-mean clustering support vector machine regression prediction of PM2.5 concentration
  • 相关文献

参考文献15

  • 1杨洪斌,邹旭东,汪宏宇,刘玉彻.大气环境中PM_(2.5)的研究进展与展望[J].气象与环境学报,2012,28(3):77-82. 被引量:213
  • 2张云海,孙财涛,杨洪斌.基于逐步回归分析方法的PM10浓度预报模型[J].环境科学与技术,2009,32(5):100-102. 被引量:24
  • 3GEOFFREY C W. An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations[J]. Atmospheric Environment, 2010, 44(25): 3015-3023.
  • 4JEE H, CLEMENS M, GERWIN D, et al. Artificial neural network forecast for daily average PM10 hourly concentrations, in the greater area of Athens Greece[J]. Atmospheric Environment, 2006, 40(7):1216-1229.
  • 5IRANI R, NASIMI R. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Expert Systems with Applications, 2011, 38(8):9862-9866.
  • 6YUAN Jingling,ZHONG Luo,DU nongfu,TAO Haizheng.Prediction of Free Lime Content in Cement Clinker Based on RBF Neural Network[J].Journal of Wuhan University of Technology(Materials Science),2012,27(1):187-190. 被引量:5
  • 7杨树平,冯晖,黄晓.B-P神经网络在环境空气质量预报中的应用[J].云南环境科学,2003,22(B03):52-54. 被引量:11
  • 8常涛. 支持向量机在乌鲁木齐大气污染预报中的应用研究[EB/OL]. [2015-11-16]. http://www.doc88.com/p- 6941561741753.html.
  • 9XUE Y S, WU Y, YU L, et al. Suppost vector machine regression applied to MODIS data for PM10 con- centaration analysis[EB/OL]. [2015-11-16]. http://xueshu. baidu.com/s?wd=paperuri:(956bf799f9665484278f3c2fbccf718b)&filter=sc_long_sign&sc_ks_para=q%3DSuppost+vector+machine+regression+applied+to+MODIS+data+for+PM10+concentaration+analysis&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=15211614022895719430.
  • 10GARC?A N P J, COMBARRO E F, DEL C D, et al. A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study[J]. Applied Mathematics and Computation, 2013, 21917:8923-8937.

二级参考文献105

共引文献2529

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部