期刊文献+

PdAu/Al_2O_3合金纳米催化剂的合成、表征及其在4-氯硝基苯加氢中的应用

Synthesis, Characterization and Catalytic Activity of Pd Au/Al_2O_3 for p-Chloronitrobenzene Hydrogenation
下载PDF
导出
摘要 采用乙二醇连续还原法合成了不同摩尔比的PdAu合金纳米颗粒.利用XRD、TEM、DRIFT-IR和紫外可见光光谱表征技术对其进行了表征.结果表明,纳米Pd种子与氯金酸钠发生置换反应,表面元素重新排布,Pd、Au纳米颗粒以PdAu合金形式存在,且合金粒径大小可控.将不同摩尔比的PdAu合金纳米颗粒采用共沉淀法负载到Al_2O_3载体上,制得PdAu/Al_2O_3催化剂,并将其应用于4-氯硝基苯的加氢反应中.与Au/Al_2O_3、Pd/Al_2O_3催化剂(4-氯硝基苯转化率为0和37.4%)相比,PdAu/Al_2O_3催化剂大大提高了4-氯硝基苯加氢活性,其中PdAu-1/0.5/Al_2O_3催化剂具有最高的催化活性,4-氯硝基苯转化率为69.4%,这可能归因于PdAu合金纳米颗粒间的协同效应和PdAu与Al_2O_3载体间的强相互作用. PdAu alloy nanoparticles with different molar ratio have been synthesized via sequential reduction method using glycol as the reductant. The results of XRD, TEM, DRIFT-IR and UV-visible spectra indicate that Au in sodium tetrachloroaurate (NaAuCI4) is partially replaced by Pd, resulting with the rearrangement of the surface atoms, thus the nanoparticles of Pd and Au are generated in the form of PdAu alloy with controllable particle size. PdAu/Al2O3 catalyst is prepared using the co-precipitation method and applied for p- chloronitrobenzene (p-CNB) hydrogenation with H2. Compared with Au/Al2O3 (the conversion of p-CNB being 0) and Pd/Al2O3 (the conversion of p-CNB being 37.4%) catalysts, the catalytic performance of PdAu/Al2O3 catalyst is significantly improved, where PdAu-1/0.5/Al2O3 exhibits the best catalytic performance with the highest conversion of p-CNB being 69.4%, which is probably attributed to the synergistic effect among PdAu nanoparticles and strong interaction between PdAu and A1203 support.
出处 《宁波大学学报(理工版)》 CAS 2016年第4期72-76,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(11375091) 宁波市自然科学基金(2011A610171) 宁波大学学科项目(xkzwl03)
关键词 PdAu合金纳米颗粒 尺寸可控 催化加氢 4-氯硝基苯 PdAu nano-alloy particle size controlled catalytic hydrogenation p-chloronitrobenzene
  • 相关文献

参考文献21

  • 1周颖,陈立宇,李映伟.纳米多相催化材料在常温反应中的应用[J].化工进展,2015,34(10):3530-3539. 被引量:1
  • 2SU R, TIRUVALAM R, HE Q, et al. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au- Pd nanoparticles[J]. ACS Nano, 2012, 6(7):6284-6292.
  • 3XU J, WHITE T, LI P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation[J]. J Am Chem Soc, 2010, 132(30):10398-10406.
  • 4HECK K N, NUTT M O, ALVAREZ P, et al. Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination[J]. J Catal, 2009, 267(2):97-104.
  • 5DIMITRATOS N, LOPEZ-SANCHEZ J A, MEENAKSHISUNDARAM S, et al. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanoparticles[J]. Green Chem, 2009, 11(8):1209-1216.
  • 6OKAMOTO H, MASSALSKI T B. Alloy phase diagrams [EB/OL]. [2015-12-10]. http://products. asminternational. org/hbk/index.jsp.
  • 7LIM B, KOBAYASHI H, YU T, et al. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth [J]. J Am Chem Soc, 2010, 132(8):2506-2507.
  • 8ZHANG K, XIANG Y J, WU X C, et al. Enhanced optical responses of Au@Pd core/shell nanobars[J]. Langmuir, 2009, 25(2):1162-1168.
  • 9ZHU C, ZENG J, TAO J, et al. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nano crystals[J]. J Am Chem Soc, 2012, 134(38):15822-15831.
  • 10DING Y, FAN F R, TIAN Z Q, et al. Atomic structure of Au-Pd bimetallic alloyed nanoparticles[J]. J Am Chem Soc, 2010, 132(35):12480-12486.

二级参考文献62

  • 1Vivek P,Rafael L,et al. Megnetically recoverable nanocatalysts[J].Chemical Reviews,2011,111(5):3036-3075.
  • 2Schlogl R,Abd Hamid S B,Sharifah B. Nanocatalysis:Mature science revisited or something really new?[J].Angewandte Chemie International Edition,2004,43(13):1628-1637.
  • 3Pagliaro M,Pandarus V,Ciriminna R,et al. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions[J].ChemCatChem.,2012,4(4):432-445.
  • 4Philippe Serp,Karine Philippot. Nanomaterials in Catalysis[M].Weinheim,Germany:Wiley-VCH,2012:1-54.
  • 5Lam F L Y,Li M C L,Chau R S L,et al. Catalysis at room temperature:Perspectives for future green chemical processes[J].WIREs Energy Environ.,2015,4(4):316-338.
  • 6Zhu X,Hoang T,Lobban L,et al. Low CO content hydrogen production from bio-ethanol using a combined plasma reforming-catalytic water gas shift reactor[J].Applied Catalysis,B:Environmental,2010,94(3-4):311-317.
  • 7White R J,Luque R,Budarin V L. Supported metal nanoparticles on porous materials. Methods and applications[J].Chemical Society Reviews,2009,38(2):481-494.
  • 8Wu B,Zheng N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J].Nano Today,2013,8(2):168-197.
  • 9Hu J,Chen Z,Li M,et al. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J].ACS Applied Materials& Interfaces,2014,6(15):13191-13200.
  • 10Yasukawa T,Miyamura H,Kobayashi S. Chiral metal nanoparticle-catalyzed asymmetric C—C bond formation reactions[J].Chemical Society Reviews,2014,43(5):1450-1461.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部