期刊文献+

李代数W(2,2)上的Poisson结构 被引量:10

Poisson Structure on the Lie Algebra W(2,2)
下载PDF
导出
摘要 Poisson代数是指同时具有代数结构和李代数结构的一类代数,其乘法和李代数乘法满足Leibniz法则.李代数W(2,2)在权为2的向量生成的顶点算子代数的分类中起着重要作用.文章主要确定了李代数W(2,2)上的Poisson结构,并得到了Virasoro代数上一般的非结合的Poisson结构,改进了文[姚裕丰.Witt代数和Virasoro代数上的Poisson代数结构[J].数学年刊,2013,34A(1):111-128]的部分结果. Poisson algebras are algebras with an algebra structure and a Lie algebra structure,both of which satisfy the Leibniz law.The Lie algebra W(2,2) plays a key role in classification of vertex operator algebras generated by weight 2 vectors.The authors mainly determine the Poisson structure on W(2,2) and the Poisson structure on the Virasoro algebra,which partially improve results in[Yao Y F.Poisson algebra structures on the Witt algebra and the Virasoro algebras[J].Chinese Ann Math,2013,34A(1):111-128].
作者 李雅南 高寿兰 刘东 LI Yanan GAO Shoulan LIU Dong(Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China. Corresponding author. Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China.)
出处 《数学年刊(A辑)》 CSCD 北大核心 2016年第3期267-272,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11371134 No.11201141) 浙江省自然科学基金项目(No.LZ14A010001 No.LQ12A01005 No.LY16A010016)的资助
关键词 李代数W(2 2) POISSON代数 Leibniz法则 VIRASORO代数 Lie algebra W(2 2) Poisson algebra Leibniz' rule Virasoro algebra
  • 相关文献

参考文献10

  • 1Zhang W, Dong C. W-algebra W (2, 2) and the vertex operator algebra L (1,0) Q L (1,0) [J]. Commun Math Phys, 2009, 285(3):991-1004.
  • 2靳全勤,佟洁.Toroidal李代数上的Poisson代数结构[J].数学年刊(A辑),2007,28(1):57-70. 被引量:9
  • 3佟洁,靳全勤.李代数的Poisson代数结构Ⅱ[J].数学杂志,2010,30(1):145-151. 被引量:9
  • 4姚裕丰.Witt代数和Virasoro代数上的Poisson代数结构[J].数学年刊(A辑),2013,34(1):111-128. 被引量:13
  • 5Kubo F. Finite-dimensional non-commutative Poisson algebras [J]. J Pure Appl Algebra, 1996, 113:307-314.
  • 6Kubo F. Non-commutative Poisson algebra struetures on affine Kac-Moody algebras [J]. J Pure Awl Alaebra. 1998. 126:267 286.
  • 7佟洁,靳全勤.广义仿射李代数上的非交换Poisson代数结构[J].数学学报(中文版),2011,54(4):561-570. 被引量:8
  • 8Zusmanovich P. A compendium of Lie structures on tensor products [J]. J Math Sci, 2013, 414:40-81.
  • 9Liu D, Gao S L, Zhu L S. Classification of irreducible weight modules over the W-algebra W(2, 2) [J]. J Math Phys, 2008, 49:113503, 6pp.
  • 10Ovsienko Y V, Roger C. Extension of Virasoro group and Virasoro algebra by modules of tensor densities on S1 [J]. Funct Anal Appl, 1996, 31(4):290-291.

二级参考文献24

  • 1靳全勤,佟洁.Toroidal李代数上的Poisson代数结构[J].数学年刊(A辑),2007,28(1):57-70. 被引量:9
  • 2靳全勤,佟洁.POISSON ALGEBRA STRUCTURES ON sp_(2■)(■_Q)WITH NULLITY m[J].Acta Mathematica Scientia,2007,27(3):473-490. 被引量:2
  • 3Gerstenhaber M, Schack S D. Algebraic cohomology and deformation theory[C]. Deformation theory of algebras and structures and applications[A]. Dordrecht: Kluwer Academic Publishers, 1988, 11- 264.
  • 4Kubo Fujio. Finite-dimensional non-commutative Poisson algebras[J]. Journal of Pure and Applied Algebra, 1996, 113: 307-314.
  • 5Kubo Fujio. Non-commutative Poisson algebra structures on affine Kac-Moody algebras[J]. Journal of Pure and Applied Algebra, 1998, 126: 267-286.
  • 6Jin Quanqin, Tong Jie. Poisson algebra structures on toroidal Lie algebras[J]. Chin. Ann. Math. Ser. A, 2007, 28(1): 57-70.
  • 7Eswara R S. Irreducible representations for toroidal Lie algebras[J]. J. Pure Appl. Algebra, 2005, 202(1): 102-117.
  • 8Tong Jie, Jin Quanqin. Non-commutative Poisson algebra structures on the Lie algebras son(CQ)[J]. Algebra Colloquium, 2007, 14(3): 521-536.
  • 9Gerstenhaber M,On the cohomology structure of an associative ring[J],Ann.Math,1963,78:59-103.
  • 10Gerstenhaber M,On the deformation of rings and algebras[J],Ann.Math,1964,79:267-288.

共引文献20

同被引文献24

引证文献10

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部