期刊文献+

基于Ganglia和Nagios的云计算平台智能监控系统 被引量:2

Intelligent Monitoring System on Cloud Computing Platform Based on Ganglia and Nagios
下载PDF
导出
摘要 随着现代数据中心云计算规模日益增长,云计算平台的智能运维管理面临较大挑战,尤其在实时监控领域方面。首先对云计算监控技术进行了深入分析和研究,然后在开源云计算平台Hadoop环境下,将Ganglia和Nagois两种开源监控软件进行整合,并利用移动飞信来实现对云计算平台的实时监控。实验结果表明,该系统可对云计算平台内主机和服务以及运行环境的各项性能指标进行全方位监控,实现对故障的实时预警和报警,使得管理人员能准确定位、实时处理云平台异常情况,从而提高了云平台的服务质量,有较好的应用价值。 With the growing scale of cloud computing in modern data centers, the intelligent operation and main- tenance management faces a great challenge, especially in real -time monitoring. After a thorough analysis and research of cloud computing monitoring technologies, this paper integrates two open - source monitoring software Ganglia and Nagois in a Hadoop open - source cloud computing platform, and uses a mobile message software FeiXin to achieve real - time monitoring of the cloud computing platform. Experimental results show that the pro- posed system realizes an all - round monitoring of performance indicators for hosts and servica of operating envi- ronment in cloud computing platform and a real - time warning of faults, which help management personnel accu- rately locate and real - timely process abnormal situations. Therefore the system improves the quality of service of cloud computing platform and has a good practical value.
出处 《安徽理工大学学报(自然科学版)》 CAS 2016年第4期69-74,共6页 Journal of Anhui University of Science and Technology:Natural Science
关键词 云计算 HADOOP 性能指标 监控系统 cloud computing hadoop performance indicators monitoring system
  • 相关文献

参考文献3

二级参考文献12

  • 1Massie M L,Chun B N,Culler D E. The ganglia distributed monitoring system : design, implementation, and experience [ J ]. Parallel Computing, 2004,30 : 817 - 840.
  • 2Sottile M, Minnich R. Supermon: A high speed cluster monitoring system [ C ]//Proceedings of Cluster,2002.
  • 3Friedman R. Best practice in cluster management[ C ]//Proceedings of the 2006 ACM/IEEE conference,2006.
  • 4Vallee G. System management software for virtual environments [ C ]// Proceedings of the 2007 ACM/IEEE conference,2007.
  • 5Kriakov V. Self-tuning management of update-intensive multidimensional data in clusters of workstations [ J ]. The International Journal on Very Large Data Bases,2009.
  • 6Jiao J, Naqvi S, Raz D, et al. Towards Efficient Monitoring[J]. IEEE Journal on Selected Areas in Communications,2000,18 (5).
  • 7Agarwala S, Poellabauer C, Kong J, et al. Resource-Aware Stream Management with the Customizable dproc Distributed Monitoring Mechanisms[ Cl//Proc 12^th IEEE International Syrup. On High Performance Distributed Computing ( HPDC-12 ) , Seattle, Washington ,June 2003.
  • 8赵铁柱.分布式文件系统性能建模及应用研究:[PhDThe-sis ] [D].广州:华南理工大学,2011.
  • 9王珊,肖艳芹,刘大为,覃雄派.内存数据库关键技术研究[J].计算机应用,2007,27(10):2353-2357. 被引量:52
  • 10安俊秀.基于服务器集群的云检索系统的研究与示范[J].计算机科学,2010,37(7):179-182. 被引量:7

共引文献19

同被引文献18

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部