期刊文献+

HCl浓度对多孔硅微结构及Si-H键合的影响 被引量:1

Effect of the Concentration of Hydrochloric Acid on the Microstructure and Si-H Bonds in Porous Silicon
原文传递
导出
摘要 采用电化学湿法刻蚀制备了P型多孔硅,通过改变HCl溶液浓度来调整刻蚀液中的氢离子浓度。制备出的多孔硅孔径相同,孔深随着氢离子浓度的提高呈线性增大直至恒定。基于电流突发模型阐述了结构参数的变化:孔径的形成开始于刻蚀的初始阶段,空穴主导了初始阶段的腐蚀,空穴的迁移与消耗过程就是孔径扩张和孔壁形成的过程,该过程与硅片本身的性能密切相关,与氢离子浓度无关,故孔径基本恒定;氢离子浓度的提高加快氢的置换反应直至平衡,从而使反应总速率提高直至恒定,因此孔深先线性增大然后保持恒定;Si-H含量在一定范围内与孔深的变化吻合呈现上升趋势,且键合形式以Si-H2为主。 In order to increase hydrogen ion concentration, hydrochloric acid was added in the etch- ing liquid for the preparation of porous silicon used by electrochemical wet etching. The diameters of pores were constant and the depth linearly increased into constant with the concentration of hydrogen ions. The changes of the diameter and depth of pores were discussed on the basis of current burst mod- el. The apertures formed in the initial stage of etching. In this stage the holes dominated the silicon corro- sion, and the transport and consumption of the holes led to the aperture expansion and the formation of pore walls. The characters of holes were decided by silicon substrates and were not related to the con- centration of hydrogen ions, so the apertures were constant. The increase of hydrogen ion concentration led to the acceleration until constant on the reaction rate of hydrogen displacement, so the system reac- tion rate was accelerated to a constant until it was limited by other reaction. The curve of pore depth - hy- drochloric acid concentration remained constant after a linear increasing. Si-H contents increased with the pore depth in the certain range. Si-H2 bonds dominated in the bondinq type of Si-Hx (x=1, 2, 3).
出处 《材料研究学报》 EI CAS CSCD 北大核心 2016年第9期717-720,共4页 Chinese Journal of Materials Research
基金 国家自然科学基金青年科学基金11005076 11305029 中国电子科技集团公司第三十研究所协作项目~~
关键词 无机非金属材料 HCL 多孔硅 微结构 SI-H 电流突发模型 inorganic non-metallic materials, HCI, porous silicon, microstructure, Si-H bond, current burst mode
  • 相关文献

参考文献9

  • 1L. T. Canham, Silicon quantum wire array fabrication by electro- chemical and chemical dissolution of wafers, Applied Physics Let- ters, 57(10), 1046(1990).
  • 2Vladimir Lysenko, Fabrice Bidault, Sergei Alekseev, Vladimir Zait- sev, Daniel Barbier, Christophe Turpin, Francesco Geobaldo, Paola Rivolo, Edoardo Garrone, Study of Porous Silicon Nanostructures as Hydrogen Reservoirs, Joumal of Physical Chemistry B, 109, 19711 (2005).
  • 3Changyong Zhan, Paul K. Chu, Ding Ren, Ytmchang Xin, Kaifu Huo, Yu Zou, N.K. Huang, Release of hydrogen during transforma- tion from porous silicon to silicon oxide at normal temperature, In- ternational Joumal of Hydrogen Energy, 36, 4513(2011).
  • 4Brian Lillis, Comelia Jungk, Daniela Iacopino, Andrew Whelton, Eileen Hurley, Michelle M. Sheehan, Alexandra Splinter, Aidan Quinn, Gareth Redmond, William A. Lanec, Alan Mathewson, Hel- en Bemey, Microporous silicon and biosensor development: struc- tural analysis, electrical characterisation and biocapacity evalua- tion, Biosensors and Bioelectronics, 21,282(2005).
  • 5Jillian M. Buriak, High surface area silicon materials: fundamentals and new technology, Philosophical Transactions of the Royal Soci- etyA, 364, 217(2006) H. F611,.
  • 6M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon, Materials Science and Engineering R, 39, 93(2002).
  • 7K. Kobayashi, F. A. Harraz, S. Izuo, T. Sakka, Y. H. Ogata, Macro- pore growth in a prepatterned p-type silicon wafer, Physica Status SolidiA, 204(5) 5, 1321(2007).
  • 8V. Lysenko, J. Vitiello, B. Remaki, D. Barbier, V. Skryshevsky, Na- noscale morphology dependent hydrogen coverage of meso-porous silicon, Applied Surface Science, 230, 425(2004).
  • 9V. Lysenko, S. Alekseev, J. Botsoal, D. Barbier, Incorporation of hydrogen in porous silicon nanocrystallites, Physica Status Solidi A, 204(5), 1307(2007).

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部