期刊文献+

Dynamics on tumor immunotherapy model with periodic impulsive infusion 被引量:1

Dynamics on tumor immunotherapy model with periodic impulsive infusion
原文传递
导出
摘要 A periodic pulse differential equation model of tumor immunotherapy is established by considering the periodic and transient behavior of infusing immune cells. Using comparison theorem and Floquet multiplier theory of the impulsive differential equation, the boundedness of the model solution, the existence and stability of the free-tumor periodic solution are given. Furthermore, the persistence of the system is analyzed. Numerical simulations are carried to confirm the main theorems.
出处 《International Journal of Biomathematics》 2016年第5期261-275,共15页 生物数学学报(英文版)
基金 Acknowledgments This project was supported by Hunan China (Nos. 14JJ2089, 13JJ9008) and (Nos. 14A128, 12C0361). Provincial Natural Science Foundation of Hunan Provincial Education Department
关键词 Tumor immunotherapy periodic impulsive infusion STABILITY PERSISTENT 微分方程模型 周期脉冲 免疫治疗 肿瘤 动力学 Floquet乘子 脉冲微分方程 瞬态行为
  • 相关文献

参考文献2

二级参考文献12

  • 1N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32 (2000) 413-452.
  • 2T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. Roy. Soc. London Ser. A 462 (2006) 229-261.
  • 3R. A. Gatenby, Models of tumor host interaction as competing populations: Implications for tumor biology and treatment, J. Theor. Bioi. 176 (1995) 447-455.
  • 4R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res. 56 (1996) 5745-5753.
  • 5S. Michelson and J. Leith, Autocrine and paracrine growth factors in tumor growth: A mathematical model, Bull. Math. BioI. 53 (1991) 639-656.
  • 6K. Mischaikow, H. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc. 347 (1995) 1669- 1685.
  • 7J. D. Murray, Mathematical Biology, Vols. I and II (Springer-Verlag, New York, 2002).
  • 8K. J. Palmer, Exponential dichotomies and transversal homo clinic points, J. Differential Equations 55 (1984) 225-256.
  • 9J. A. Sherratt, Cellular growth control and traveling waves of cancer, SIAM J. Appl. Math. 53 (1993) 1713-1730.
  • 10J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term modeling contact inhibition between cell populations, Proc. Roy. Soc. London Ser. A 456 (2000) 2365-2386.

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部