期刊文献+

一种基于关系数据库管理系统的图计算平台 被引量:2

A RDBMS-based graph computing platform
下载PDF
导出
摘要 本文提出了一种新的基于关系数据库管理系统(Relational Database Management System,RDBMS)(本文简称关系数据库)的图计算平台.该平台将图数据以原生的形式在关系数据库的表格中存储,从而在数据表达上和原生图计算平台达到了一致.该平台将图计算逻辑完整准确地表达为SQL(Structured Query Language)查询语句.关系数据库执行SQL查询语句,从而完成图计算,并将结果返回.实验结果表明,该新的平台有效地利用了关系数据库成熟的查询优化技术,在很多方面优于现有的原生数据平台;而目前的性能局限,也会随着未来关系数据库的不断演化和迭代,得到有效的解决. This paper proposes a new RDBMS-based (relational database management system) graph computing platform. In this platform, graph data is represented in native data structures, achieving the same representation as in native graph computing systems. On top of this native representation, graph algorithms are expressed as SQL (Structured Query Language) statements, which are executed by the underlying relational database systems. Experimental results show that this new graph computing platform leverages mature SQL technologies on query optimization and execution, thereby providing superior performance in many aspects. Its current performance limitations, on the other hand, will be overcome by future evolution and optimization of relational database systems.
作者 蒋奎 陈亮
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期103-111,共9页 Journal of East China Normal University(Natural Science)
关键词 关系数据库管理系统 图计算 原生图计算平台 RDBMS (relational database management system) graph computing native graph computing platforms
  • 相关文献

参考文献6

  • 1GONZALEZ J E, LOW Y, GU H J, et al. PowerGraph: Distributed graph-parallel computation on natural graphs [C]//Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation. 2012: 17-30.
  • 2KYROLA A, BLELLOCH G, CUESTRIN C. GraphChi: Large-scale graph computation on just a PC [C]//Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation. 2012: 31-46.
  • 3LOW Y, GONZALEZ J E, KYROLA A, et al. GraphLab: Computer Science, 2014: arXiv: 1408. 2041 [cs. LG].
  • 4VALIANT L G. A bridging model for parallel computation [J]. Communications of the ACM, 1990, 33(8): 103- 111.
  • 5MALEWICZ G, AUSTERN M H, BIK A J C, et al. Pregel: A system for large-scale graph processing [C]//Proceedings of the 28th ACM Symposium on Principles of Distributed Computing. 2009: 6-16.
  • 6Kamvar S, Haveliwala T, Golub G. Adaptive methods for the computation of PageRank [J]. Linear Algebra and its Applications, 2004, 386: 51-65.

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部