期刊文献+

基于回归分析模型的旅游官方微博影响力分析——以2015年第三季度全国十大旅游局微博影响力为例 被引量:1

On Influence of Official Micro-Blog of Tourism Administrations with Regression Analysis Model An analysis based on official micro——blog influence of 10 Chinese major tourism administrations of the 3rd quarter of 2015
下载PDF
导出
摘要 本文根据官方微博影响力评价体系中的评价指标传播力、互动力、服务力构建回归分析模型,通过Stata软件对获取数据做处理分析,得出旅游微博影响力与相关因素之间的线性关系,以期发现与旅游微博影响力相关的旅游现象,对旅游业在社交方面的发展做出展望。 This paper constructs a regression analysis model with the indexes of the evaluation system of official micro-blog influence—dissemination, interaction, service. The obtained data analysis based on this model with the Stata software indicates a linear relationship between the tourism microblog influence and the relevant factors. This study is intended to reveal the tourism phenomenon related with tourism microblog influence and the development of tourism in the social interaction.
作者 王海龙
出处 《武汉商学院学报》 2016年第4期27-30,共4页 Journal of Wuhan Business University
关键词 旅游官方微博 影响力 传播力 互动力 服务力 official micro-blog of tourism administrations influence dissemination interaction service
  • 相关文献

参考文献29

  • 1吴信东,李毅,李磊.在线社交网络影响力分析[J].计算机学报,2014,37(4):735-752. 被引量:120
  • 2Katz E, Lazarsfeld P F. Personal Influence: The Part Played by People in the Flow of Mass Communication. Piscataway: Transaction Publishers,2006.
  • 3Rashid A M, Karypis G, Riedl J. influence in ratings-based recommender systems: An algorithm-independent approach//Proceedings of the SIAM International Conference on Data Mining. Newport Beach, California, USA, 2005:556-560.
  • 4Bakshy E, Hofman J M, Mason W A, Watts D J. Everyone,s an influence: Quantifying influence on twitter//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011:65-74.
  • 5Cha M, Haddadi H, Benevenuto F, Gummadi K P. Measuring user influence in twitter: The millon follower fallacy//Proceeding of the 4th International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 2010:10-17.
  • 6Romero D M, Galuba W, Asur S, Huberman B A.Influence and passivity in social media//Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discover in Databases. Athens, Greece, 2011:18-33.
  • 7Weng J, Lirn E-P, Jiang J, He Q. Twitterrank : Finding topic-senstitive influence twitters J/Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York City, USA, 2010:261-270.
  • 8Yang J, Leskovec J, Modeling information diffusion in implicit networks//Proceedings of the 2010 IEEE International Conference on Data Mining. Sydney, Australia, 2010:599-608.
  • 9Baekstorm L, Hunterlocher D, Kleinberg J, Lan X. Group formation in large social networks: Membership, growth, and evolution//Proeeedings of the 12th ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining. Philadelphia, USA, 2006:44-54.
  • 10Grandall D, Cosley D, Huttenlocher D, et al. Feedback effects between similarity mad social influence in online communities//Proceedings of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2005:160-168.

二级参考文献2

共引文献121

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部