期刊文献+

钴掺杂Sr1.5La0.5MnO4的合成及高温电化学性能研究 被引量:2

Synthesis and High Temperature Electrochemical Properties of Co-doped Sr_(1.5)La_(0.5)MnO_4
下载PDF
导出
摘要 采用EDTA-柠檬酸法合成了中温固体氧化物燃料电池阴极材料Sr_(1.5)La_(0.5)Mn_(1-x)Co_xO_4(SLMCOx),并利用粉末X射线衍射(XRD)、X射线光电子能谱(XPS)以及电化学交流阻抗谱(EIS)进行表征。结果表明,该材料与Ce0.9Gd0.1O1.95(CGO)在1 200℃烧结12 h不发生化学反应。随着Co掺入量的增加,氧化物中Mn^(3+)和Co^(2+)含量增多,晶格氧含量降低,晶格畸变率增大。交流阻抗谱(EIS)测试结果显示,钴的掺杂明显降低电极的极化电阻,其中Sr_(1.5)La_(0.5)Mn_(0.7)Co_(0.3)O_4阴极在700℃空气中的极化电阻为0.62Ω·cm^2,明显小于Sr_(1.5)La_(0.5)MnO_4阴极在750℃的极化电阻(1.5Ω·cm^2),表明钴掺杂的Sr_(1.5)La_(0.5)Mn_(1-x)CoxO_4是一种潜在的IT-SOFC阴极材料。 Sr1.5La0.5Mn1-xCoxO4 (SLMCOx) cathode materials for IT-SOFCs (intermediate temperature solid oxide fuel cells) were synthesized by EDTA-citric acid method and characterized by XRD, XPS and EIS, respectively. The results show that SLMCOx has no reaction with Ce0.9Gd0.1O1.95 at 1 200℃ for 12 h. Both the amount of Mn3 and Co2 in the oxide increase with the Co doping concentration; at the same time the content of lattice oxygen reduces, and the distortion ratio (c/a) of the lattice increases. The EIS results show that Co-doping dramatically reduces the polarization resistance (Rp) of SLMCOx cathode. The Sr1.5La0.5Mn0.7Co0.3O4 has the lowest Rp of 0.62 Ωcm2 at 700℃ in air, which is clearly smaller than the Rp value of Sr1.5La0.5Mn0.7O4 that measured at 750℃ (1.5 Ωcm2). Our results indicate that the Co doped Sr1.5La0.5Mn1-xCoxO4 is potential cathode material for IT-SOFC.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第10期1730-1738,共9页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51302069,51372073) 高等学校博士学科点专项科研基金(No.20132301110002) 人事部留学人员科技活动择优项目(No.2014-240)资助
关键词 中温固体氧化物 燃料电池 阴极材料 intermediate temperature solid oxide fuel cells (IT-SOFCs) cathode material
  • 相关文献

参考文献52

  • 1Kreuer K D. Annu. Rev. Mater. Res., 2003,33(1):333-359.
  • 2Orera A, Slater P R. Solid State Ionics, 2010,181(3):110- 114.
  • 3Brandon N P, Skinner S, Steele B C H, et al. A nnu. Rev. Mater. R es., 2003,33(1):183-213.
  • 4Cao Y, Gu H, Chen H, et al. Int. J. Hydrogen Energy, 2010, 35(11):5594-5600.
  • 5Atkinson A, Barnett S, Gorte R J, et al. Nat. Mater., 2004,3 (1):17-27.
  • 6Lynch M E, Yang L, Qin W, et al. Energy Environ. Sci., 2011, 4(6):2249-2258.
  • 7Armstrong E N, Duncan K L, Oh D J, et al. J. Electrochem. Soc., 2011,158(5):492-499.
  • 8Yaremchenko A A, Kovalevsky A V, Kharton V V, et al. Solid State Ionics, 2008,179(38):2181-2191.
  • 9Sun L P, Li Q, Huo L H, et al. J. Power Sources, 2011,196 (14):5835-5839.
  • 10Li R K, Greaves C. J. Solid State Chem., 2000,153(1):34-40.

二级参考文献2

共引文献4

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部