期刊文献+

睡眠呼吸暂停综合征患者脑电的去趋势波动分析 被引量:3

Detrended Fluctuation Analysis of Electroencephalogram of Patients with Sleep Apnea Syndrome
原文传递
导出
摘要 睡眠呼吸暂停综合征(SAS)是一种发病率高且危害巨大的睡眠疾病,其病理机制复杂,诊治困难,从单一或少量生理信号中挖掘SAS的特征信息是近年来睡眠疾病研究的热点。本文基于脑电(EEG)的非平稳和非线性特性,采用去趋势波动分析(DFA)对SAS患者和健康人的睡眠脑电进行研究。研究发现,SAS患者和健康人睡眠脑电的标度指数α随着睡眠加深逐渐增大,而在快速眼动期(REM)则下降;与此同时,SAS组的标度指数在各个睡眠阶段均高于对照组,两组间存在明显差异(P<0.01);采用受试者工作特征(ROC)曲线对脑电标度指数区分SAS的性能进行评价,得到SAS组和对照组的睡眠脑电标度指数最佳临界值0.81,对应灵敏度为94.4%,特异度为99.2%,曲线下面积(AUC)为0.994。结果说明DFA标度指数用于SAS区分有很好的辨别能力和准确度,为SAS诊断提供了新的理论依据。 Sleep apnea syndrome (SAS) is a kind of harmful systemic sleep disorder with high incidence, and the pathological mechanism of it is complicated and the diagnosis and treatment are difficult. Mining the characteristic information of SAS from the single or small physiological signal is a hot topic in the research of sleep disorders in recent years. In our study shown in this paper, the detrended fluctuation analysis (DFA) was used to analyze sleep electroencephalogram (EEG) of SAS patients and normal healthy persons based on the non-stationary and nonlinear characteristics. It was found that in both groups, the scaling exponents increased gradually with the deepening of sleep, and in the rapid eye movement (REM) stage, the scaling exponents decreased. The scaling exponents of SAS group were significantly higher than those of the healthy group. The performance of SAS diagnosis based on scaling exponents was evaluated with receiver operator characteristic (ROC) curve. The optimal threshold value 0. 81 for the SAS and normal control were obtained, corresponding to the sensitivity 94.4%, specificity 99.2%, and area under curve (AUC) was 0. 994. The results show that DFA scaling exponents have a good discrimination power and accu- racy for the SAS, which provide a new theoretical basis for SAS diagnosis.
作者 周静 吴效明 ZHOU Jing WU Xiaoming(School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第5期842-846,共5页 Journal of Biomedical Engineering
基金 广东省公益研究与能力专项资助(2014A020212657) 华南理工大学中央高校面上项目资助(2015ZM179)
关键词 睡眠呼吸暂停综合征 脑电 去趋势波动分析 标度指数 sleep apnea syndrome electroencephalogram detrended fluctuation analysis scaling exponents
  • 相关文献

参考文献23

  • 1GUILLEM1NAULT C, T1LKIAN A, DEMENT W C. The sleep apnea syndrome [J]. Annu Rev Med, 1976, 27, 465 484.
  • 2IVANOV P C, BUNDE A, AMARAL L N, et al. Sleep- wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term space flight data [J]. Europhys Lett, 1999, 48(5): 594 600.
  • 3ASHKENAZY Y, LEWKOWICZ M, LEVITAN J, et al. Scale-specific and scale-independent measures of heart rate variability as risk indicators [J]. Europhys Lett, 2001, 53 (6) : 709-715.
  • 4BUNDE A, HAVL1N S, KANTELHARDT J W, et al. Cor- related and uncorrelated regions in heart-rate fluctuations dur- ing sleep[J]. PhysRevLett, 2000, 85(17): 3736-3739.
  • 5YUAN Naiming, FU Zuntao, MAO Jiangyu. Different seal ing behaviors in daily temperature records over China [J]. Physica A, 2010, 389(19): 4087-4095.
  • 6IVANOVA K, AUSLOOS M. Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking[J]. PhysicaA, 1999, 274(1/2): 349-354.
  • 7TALKNER P, WEBER R O. Power spectrum and detrendedfluctuation analysis: Application to daily temperatures [J]. Phys Rev E, 2000, 62(1): 150-160.
  • 8TELESCA L, BALASCO M, LAPENNA V. Investigating the time correlation properties in self-potential signals recor- ded in a seismic area of Irpinia, southern haly [J]. Chaos Solitons Fractals, 2005, 32(1): 199-211.
  • 9SKORDAS E S, SARLIS N V, VAROTSOS P A. Effect of significant data loss on identifying electric signals that precede rupture estimated by detrended fluctuation analysis in natural time[J]. Chaos, 2010, 20(3): 033111.
  • 10RUAN Yongping, ZHOU Weixing. Long-term correlations and muhifractal nature in the intertrade durations of a liquid Chinese stock and its warrant [J]. Physica A, 2011, 390(9) 1646-1654.

二级参考文献30

  • 1王国杰,姜彤,陈桂亚.长江干流径流的时序结构与长期记忆[J].地理学报,2006,61(1):47-56. 被引量:20
  • 2Bunde A, Havlin S, Koscielny-Bunde E, et al. Long term persistence in the atmosphere : global laws and tests of climate models[J] . Physica a-Statistical Mechanics and Its Applications, 2001, 302(1-4) : 255-267.
  • 3Vjushin D, Govindan R B, Brenner S, et al . Lack of scaling in global climate models [J] . Journal of Physics-Condensed Matter, 2002, 14(9) : 2275-2282.
  • 4Govindan R B, Vyushin D, Bunde A, et al . Global climate models violate scaling of the observed atmospheric variability[J] . Physical Review Letters, 2002, 89(2) : 028501-1-028501-4.
  • 5Fraedrieh K, Luksch U, Blender R . l/f model for long-time memory of the ocean surface temperature[J] . Physical Review E, 2004, 70(3): 037301-1-037301-4.
  • 6Bordi I, Fraedrich K, Gerstengarbe F W, et al . Potential predictability of dry and wet periods: Sicily and Elbe-Basin(Germany) [J] . Theoretical and Applied Climatology, 2004, 77(3-4) : 125-138 .
  • 7Blender R, Fraedrich K . Long time memory in global warming simulations [J] . Geophysical Research Letters, 2003, 30(14) : 1769-1772.
  • 8Hurst H E . Long-Term Storage Capacity of Reservoirs [J] . Transactions of the American Society of Civil Engineers, 1951, 116: 770-799.
  • 9Mandelbrot B B, Wallis J R . Soine Long-Run Properties of Geophysical Records [J] . Water Resources Research, 1969, 5(2): 321-340.
  • 10Peng C K, Buldyrev S V, Havtin S, et al . Mosaie organization of DNA nueleotides [J] . Physical Review E, 1994, 49(2) :1685-1689.

共引文献20

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部