期刊文献+

基于熵的严重意识障碍脑电信号识别方法 被引量:1

An Assessment Method of Electroencephalograph Signals in Severe Disorders of Consciousness Based on Entropy
原文传递
导出
摘要 本研究旨在实现对植物状态和最小意识状态脑电信号的分类识别。通过对植物状态和最小意识状态患者施加唤名刺激,采集被唤名时患者的脑电信号;然后对脑电数据进行去噪预处理、样本熵和多尺度熵的特征提取;最后将提取的数据特征送入多核学习支持向量机(SVM)中进行训练和分类。试验结果表明,严重意识障碍患者alpha波脑电特征表现显著,平均分类精度为88.24%,实现了定量化的严重意识障碍状态判定,为意识障碍程度的临床诊断提供了辅助依据。 This paper explores a methodology used to discriminate the electroencephalograph (EEG) signals of patients with vegetative state (VS) and those with minimally conscious state (MCS). The model was derived from the EEG data of 33 patients in a calling name stimulation paradigm. The preprocessing algorithm was applied to remove the noises in the EEG data. Two types of features including sample entropy and multiscale entropy were chosen. Multiple kernel support vector machine was investigated to perform the training and classification. The experimental results showed that the alpha rhythm features of EEG signals in severe disorders of consciousness were significant. We achieved the average classification accuracy of 88.24%. It was concluded that the proposed method for the EEG signal classification for VS and MCS patients was effective. The approach in this study may eventually lead to a reliable tool for identifying severe disorder states of consciousness quantitatively. It would also provide the auxiliary basis of clinical assessment for the consciousness disorder degree.
作者 李晓欧 谭英超 杨勇 LI Xiaoou TAN Yingchao YANG Yong(College of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第5期855-861,共7页 Journal of Biomedical Engineering
基金 上海市自然科学基金项目资助(14ZR1440100)
关键词 植物状态 最小意识状态 样本熵 多尺度熵 多核学习支持向量机 vegetative state minimally conscious state sample entropy multiscale entropy multiple kernel support vector machine
  • 相关文献

参考文献15

  • 1FELLINGER R, KLIMESCH W, SCHNAKERS C, et al. Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses [J]. Clinical Neurophysiolo- gy, 2011, 12201), 2177-2184.
  • 2PHILLIPS C L, BRUNO M A, MAQUET P, et al. "Rele vance vector machine" consciousness classifier applied to cere- bral metabolism of vegetative and locked-in patients [J]. Neuroimage, 2011, 56(2): 797-808.
  • 3HARRISON A H, CONNOLLY J F. Finding a way in: a re- view and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness [J]. Neurosci Biobehav Rev, 2013, a7(8) : 1403-1419.
  • 4BABILONI C, SARA M, VECCHIO F, et al. Cortical sources of resting state alpha rhythms are abnormal in persis- tent vegetative state patients [J] Clin Neurophysiol, 2009, 120(4): 719-729.
  • 5CHII.I)S N L, MERCER W N, CHILDS H W. Accuracy of diagnosis of persistent vegetative state [J]. Neurology, 1993, 43(8): 1465 1467.
  • 6SCHNAKERS C, I.EIXIUX D, MAJERUS S, el al. Diag- nostic and prognostic use of bispectra index in coma, vegeta- tive state and related disorders [J] Brain Injury, 2008, 22 (12): 926 931.
  • 7GOSSERIES O, SCHNAKERS C, LEDOUX D A, et al. Au- tomated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally con- scious state[J]. Funct Neurol, 2011, 26(1): 25 30.
  • 8BERI.AD I, PRATT H. P300 in response to the subject's own Name [J]. Eleetroeneephalogr Clin Neuropbysiol, 1995, 96(5): 472 474.
  • 9翁旭初.fMRI在临床和基础神经科学研究中的应用举例[c]//中国神经科学学会第四次会员代表大会暨第七届全国学术会议.杭州,2007:10.
  • 10FINGELKURTS A A, FINGELKURTS A A, BAGNATO S, et aI. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and mini- mally conscious states FJ:. Conscious Cogn, 2012, 21 (1) : t49 169.

二级参考文献35

  • 1徐进,郑崇勋,和卫星.基于脑电近似熵分析的麻醉深度监测研究[J].航天医学与医学工程,2004,17(3):205-209. 被引量:11
  • 2陈晓平,和卫星,温军玲.基于脑电波复杂度的麻醉深度监测[J].江苏大学学报(自然科学版),2003,24(6):73-75. 被引量:8
  • 3陈芷若.意识障碍的神经电生理检查[J].临床神经外科杂志,2006,3(2):92-93. 被引量:4
  • 4Schnakers C. Perrin F. Schabus M. et al. Voluntary brain processing in disorders of consciousness. Neurolog, 2008, 71: 1614-1620.
  • 5Adeli H. Zhou Z. Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Meth, 2003. 123: 69-87.
  • 6Gosseries O. Schnakers C. Ledoux D. et al. Automated EEG entropy measurements in coma. vegetative slate/unresponsive wakefulness syndrome and minimally conscious Slate. Funct Neurol, 20 11,26: 25-30.
  • 7Cruse D. Chennu S. Chatelle C, et al. Bedside detection of awareness in the vegetative state: A cohort study. Lancet. 2011. 378: 2088-2091.
  • 8Wu W. Gao X. Hong B, et al. Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng. 2008. 55: 1733-1743.
  • 9Bodner M, Shaw G L, Gabriel R, et al. Detecting symmetry patterns in EEG data: A new method of analysis. Clin Electroencephal, 1999, 30:143-150.
  • 10Wang G, Yunokuchi K. Causality of frontal and occipital alpha activity revealed by directed coherence. IEICE Inf Syst, 2002, E85-D: 1334-1340.

共引文献7

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部