期刊文献+

约束复合踝关节运动对人体步态稳定性的影响 被引量:2

Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body
原文传递
导出
摘要 本文目的是研究约束复合踝关节内(外)翻和旋内(外)运动对人体步态稳定性的影响。试验在水平湿滑试验台上进行,对比了约束复合踝关节内(外)翻和旋内(外)运动(FIXED)以及无束缚(FREE)两种状态,分析了时-空步态参数、运动学参数、动力学参数以及利用摩擦系数(UCOF)。试验结果表明FIXED可能会导致步速和跨步长显著增大,双支撑期显著缩短。同时,FIXED可影响膝关节和踝关节的关节角度在矢状面内的运动幅度。另外,约束后利用摩擦系数显著增大,这反映了滑跌概率的增大以及步态稳定性的减弱。因此,在助行器、双足机器人或者假肢设计中,应该进行结构设计以实现复合踝关节内(外)翻及旋内(外)运动。 The purpose of this study is to determine how restricting inversion-eversion and pronation-supination mo- tions of the ankle joint complex influences the stability of human gait. The experiment was carried out on a slippery level ground walkway. Spatiotemporal gait parameter, kinematics and kinetics data as well as utilized coefficient of friction (UCOF) were compared between two conditions, i.e. with restriction of the ankle joint complex inversion-e- version and pronation-supination motions (FIXED) and without restriction (FREE). The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time. Fur- thermore, FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane. In FIXED condition, UCOF was significantly increased, which could lead to an increase of slip probability and a decrease of gait stability. Hence, in the design of a walker, bipedal robot or prosthetic, the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.
作者 李洋 张峻霞 苏海龙 王新亭 张琰 LI Yang ZHANG Junxia SU Hailong WANG Xinting ZHANG Yan(School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China School of Fine Arts, Tianjin University of Technology, Tianjin 300384, China Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment Tianjin University of Science and Technology, Tianjin 300222, China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第5期867-872,共6页 Journal of Biomedical Engineering
基金 高等学校博士学科点专项科研基金资助项目(20131208110005) 天津市自然科学基金资助项目(14ZCDSY00010 15JCYBJC19300 16JCZDJC35900) 国家自然科学基金青年基金资助项目(51405341)
关键词 步态分析 复合踝关节 运动 稳定性 gait analysis ankle joint complex motion stability
  • 相关文献

参考文献15

  • 1VITECKOVA S, KUTILEK P, JIRINA M. Wearable lower limb robotics: A review [J]. Bioeybernetics and Biomedical Engineering, 2013, 33(2): 96-105.
  • 2WANG Q, HUANG Y, ZHU J, et al. Effects of foot shape on energetic efficiency and dynamic stability of passive dynam- ic biped with upper body [J]. International Journal of Hu- manoid Robotics, 2010, 7(2): 295-313.
  • 3MEHRHOLZ J, POHL M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-ef- fector and exoskeleton devices [J]. Journal of Rehabilitation Medicine, 2012, 44(3): 193-199.
  • 4DARIO P, GUGLIELMELLI E, ALLOTTA B, et al. Ro- botics for medical applications[J] IEEE Robotics and Auto- mation Magazine, 1996, 3(3): 44-56.
  • 5SRINIVASAN S, RAPTIS I A, WESTERVELT E R. Low- dimensional sagittal plane model of normal human walking [J]. J Biomech Eng, 2008, 130(5): 51-60.
  • 6LEVINGER P, MURLEY G S, BARTON C J, et aL A com- parison of foot kinematics in people with normal- and flat- arched feet using the Oxford Foot Model [J]. Gait Posture, 2010, 32(4): 519-523.
  • 7MARGATETA N, VICTOR H F. Basic biomechanics of the musculoskeletal system I-M]. 3rd ed. New York: Lippincott Williams : Wilkins, 2001: 223-226, 444-446.
  • 8MILI.ARD M, KUBICA E, MCPHEE J. Forward dynamic human gait simulation using a SLIP target model [J]. Proee dia IUTAM, 2011, 2(2) : 142-157.
  • 9ROY A, KREBS H I, PATTERSON S I., et al. Measure ment of human ankle stiffness using the anklebot EC:// 1EI::E 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands, 2007: 356-363.
  • 10ZHANG Junxia, SI Ying, ZHANG Yan, et al. The effects of restricting the flexion-extension motion of the first metatarso- phalangeal joint on human walking gait [J]. Biomed Mater Eng, 2014, 24(6): 2577-2584.

二级参考文献25

  • 1Lockhart T E,Smith J L, Woldstad J C. Effect of aging onthe biomechanics of slip and falls. Human Factors, 2005,47(4) :708-729.
  • 2Stevens J A,Corso P S, Finkelstein E A,et al. The costsof fatal and non-fatal falls among older adults. Injury Pre-vention ,2006,12:290-295.
  • 3Hanson J P, Redfem M S,Mazumdar M. Predicting slipsand falls considering required and available friction. Ergo-nomics ,1999,42(12) : 1619-1633.
  • 4Barnett R L. Slip and fall theory-extreme order statistics.2002,8(2) :135-159.
  • 5Chang W R,Chang C C,Matz S,et al. A methodology toquantify the stochastic distribution of friction coefficientrequired for level walking. Applied Ergonomics,2008,39:766-771.
  • 6Chang W R, Matz S. The slip resistance of common foot-wear materials measured with two slipmeters. Applied Er-gonomics ,2001,32 (6) :549-558.
  • 7Chang W R. A statistical model to estimate the probabilityof slip and fall incidents. Safety Science, 2004, 42 ( 9 ):779-789.
  • 8Bumfield J M,Tsai Y J, Powers C M. Comparison of uti-lized coefficient of friction during different walking tasksin persons with and without a disability. Gait and Posture,2005,22(1) :82-88.
  • 9Cham R,Redfem M S. Lower extremity corrective reac-tions to slip events. Journal of Biomechanics, 2001, 34(11) :1439-1445.
  • 10Redfem M S. Changes in gait when anticipating slipperyfloors. Gait and Posture ,2002,15 ( 2) :159-171.

共引文献6

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部