期刊文献+

基于STM32低功耗磁弹性传感器检测系统的设计 被引量:1

Design of a Low-power-consuming Magnetoelastic Sensor Detecting System Based on STM32
原文传递
导出
摘要 具有无线、无源、低成本、高灵敏度等特点的磁弹性传感器已在各个领域得到了广泛的应用研究,然而现有的检测装置通常体积较庞大、功耗高、便携性差,限制了该类传感器的应用范围。对此,本文设计了一套基于STM32的便携式、低功耗共振型磁弹性传感器检测系统。系统以扫频法为检测基础,以STM32为控制核心,永磁铁作为偏置磁场激励,集成交流激励信号单元、信号检测与采集单元,并利用SD卡存储测量数据,采用锂电池供电。实验结果表明:检测系统可使磁弹性传感器在不同介质、不同浓度中完成共振频率的测量,频率分辨率可达1Hz;测量不同尺寸的磁弹性传感器,所得传感器共振频率比为0.933 8,与理论值0.942 3接近;另外,与传统的阻抗分析仪搭建的组合式检测系统和现行的集成式检测系统相比,本系统工作时功耗为0.68 W,休眠时功耗仅为2.20mW。由此可见,本系统不仅能够代替原有的阻抗分析仪等组合式检测系统,而且能够大大提升现行集成式检测系统的功耗控制,兼具高集成度、便携式以及可用于长期监测等优点。 Magnetoelastic (ME) sensors, characterized by wireless, passive, low cost and high sensitivity, have widespread applications in various fields. However, its defects of large volume, high power consumption, poor portability and inconveniency for use limit the application prospects of the ME sensors. To solve this problem, the present paper shows a portable, low-power, resonance-type ME sensor detecting system based on STM32. The experimental results indicated that this detecting system allowed the ME sensor to complete the measurement of resonant frequency in different medium and different concentration, with a frequency resolution of less than 1 Hz, and the resonant frequency ratio of ME sensors in different sizes 0.933 8, closing the theoretical value of 0.942 3. Moreover, compared with the traditional impedance analyzer combined detecting system and the existing integrated detecting system, the present system has a power consumption of 0.68 W in operation and of only 2.20 mW in the dormancy mode. Therefore, the system can not only replace the original impedance analyzer combined detecting system, but also significantly improve the power control of the existing integrated detecting system, exhibiting the advantages of higher integration, portable measurement, and fine suitability for long-term monitoring.
作者 唐詠 罗洪艳 陈曦 郑小林 胡宁 苏添进 李川 廖彦剑 TANG Yong LUO Hongyan CHEN Xi ZHENG Xiaolin HU Ning SU Tianjin LI Chuan LIAO Yanjian(College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, ( Chongqing University) Ministry of Education, Chongqing Medical Electronic Engineering Technology Research Center, Chongqing 400044, Chin)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第5期972-978,共7页 Journal of Biomedical Engineering
基金 重庆市重点产业共性关键技术创新专项资助项目(cstc2015zdcy-ztzxX0002) 重庆市研究生科研创新资助项目(cys15038)
关键词 磁弹性传感器 扫频法 共振频率 便携式 低功耗 magnetoelastic sensor frequency sweeping method resonance frequency portability low power
  • 相关文献

参考文献14

  • 1OHZEKI H, MASHINE A, AOYAMA H, et al. Develop- ment of a magnetostrictive torque sensor for milling process- monitoring [J]. J ManufSciEng, 1999, 121(4): 615-622.
  • 2XIE Hong, CHAI Yating, HORIKAWA S, et al. A pulsed wave excitation system to characterize micron-scale magne- toelastic biosensors [J]. Sens Actuators A Phys, 2014, 205: 143-149.
  • 3杨斌堂,赵寅,彭志科,孟光.基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J].光学精密工程,2013,21(1):124-130. 被引量:22
  • 4YIN Jicheng, WANG Yongsheng, ZHOU Bin, et al. A wire- less magnetoelastie sensor for uranyl using DNAzyme-graph- eme oxide and gold nanopartieles-based amplification [J]. Sens Actuators B Chem, 2013, 188: 147-155.
  • 5孟爱华,刘成龙,陈文艺,杨剑锋,李明范.超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制[J].光学精密工程,2015,23(3):753-759. 被引量:13
  • 6POSSAN A L, MENTI C, BELTRAMI M, et al. Effect of surface roughness on performance of magnetoelastic hiosen- sors for the detection of Escherichia coil [J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 541-547.
  • 7HIREMATH N, GUNTUPALLI R, VODYANOY V, et al. Detection of methicillin-resistant Staphylococcus aureus using novel lyric phage-based magnetoelastic hiosensors [J]. SensActuators B Chem, 2015, 210: 129-136.
  • 8LI Suiqiong, LI Yugui, CHEN Huiqin, eta|. Direct detection of Salmonella typhimurium on fresh produce using phage- based magnetoelastie biosensors [J]. Biosens Bioelectron, 2010, 26(4): 1313-1319.
  • 9PUCKETT L G, BARRETT G, KOUZOUDIS D, et al. Mo- nitoring blood coagulation with magnetoelastic sensors [J]. Biosens Bioelectron, 2003, 18(5/6): 675-681.
  • 10CHAI Yating, WIKLE H C, WANG Zhenyu, et al. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor [J]. J Appl Phys, 2013, 114(10): 1-6.

二级参考文献49

  • 1王博文,曹淑瑛,黄文美,孙英.超磁致伸缩致动器的数学模型和控制技术[J].河北工业大学学报,2013,42(1):6-13. 被引量:5
  • 2贾振元,王福吉,张菊,郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报,2005,41(7):131-135. 被引量:24
  • 3王雷,谭久彬,刘玉涛.超磁致伸缩体内涡流效应有限元分析[J].光学精密工程,2006,14(3):445-449. 被引量:19
  • 4樊长在,杨庆新,闫荣格,杨文荣,刘福贵.超磁致伸缩力传感器的模型研究[J].传感器与微系统,2007,26(3):40-42. 被引量:3
  • 5赵春晖,张朝柱.自适应信号处理技术[M].北京:北京理工大学出版社,2009.
  • 6Grimes C A, Mungle C S, Zeng Z F, et al. Wireless magnetoelastic resonance sensors : A critical review [ J ]. Sensors, 2002,2 ( 7 ) : 294 -313.
  • 7Ong K G, Mangle C S, Grimes C A. Control of a magnetoelaslic sensor temperature response by magnetic field tuning [ J ]. IEEE Transactions on Magnetics ,2003,39 (5) :3319-3321.
  • 8Grimes C A, Cai Q, Ong K G, et al. Environmental monitoring using magnetoelastic sensors [ C]//Proc of SPIE, San Diego, 2000 : 123 -133.
  • 9陈笃行.铁磁金属玻璃的磁弹性耦合系数及其影响因素[J].仪表材料,1982,13(6):17-22.
  • 10Tangsheng Y, Jin W, Qingyun C, et al. A new method tor mea- suring magnetoelastic sensor resonance frequency [ C ]//The 9th International Conference on Electronic Measurement & Ins- truments, Beijing,2009 : 1036 -1039.

共引文献46

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部