期刊文献+

缺损数据下CM算法的改进

Improvement of CM algorithm for missing data problems
下载PDF
导出
摘要 针对CM算法的估计值相对不够精确的问题,给出一种在缺损数据条件下,求分布参数的极大似然估计的迭代算法.算法首先通过CM算法求得不够精确的参数估计值,在所得估计值点处做平行切面.再把此切面方程与原参数估计函数方程联立,求相交曲线.在所求得的相交曲线处任取一点作为新的CM算法迭代初始值,重新进行迭代计算,进而得到较为精确估计值.在这个估计值点处,再做平行平面并进行判断直到所得估计值所在平面与原参数估计函数交点只有一个时停止.通过实例分析,用改进的算法所得估计更加精确,更加简单实用. The first step θ^∧0 is arbitrarily selected in the CM (cyclic-maximization) algorithm, and this makes the estimation error of the estimated value relatively large. Considering the shortcomings of CM algorithm, this paper presented an iterative algorithm for maximum likelihood estimation of distribution parameters under the condition of missing data. Firstly the inaccurate parameter estimated by CM algorithm and algorithm, and a parallel plane in the obtained estimates points was built. The intersection curve was obtained by putting the plane equation with the original equations of parameters estimation function. Taking a point in the intersection curve as a new CM algorithm iterative initial value, a new iterative calculation was carried out, and then an accurate estimate was obtained. At this estimated point, redoing the parallel plane and judgment until the intersection point between estimated with the original parameter estimation function is only one. Through the case analysis, the estimation results with the improved algorithm will be more accurate, more simple and practical.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第12期1517-1520,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目(11271064)
关键词 参数估计 缺损数据 EM算法 EQM算法 CM算法 parameter estimation missing data EM algorithm EQM algorithm CM algorithm
  • 相关文献

参考文献11

  • 1DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Joumal of Statistical Planning and Inference, 1977(39): 1 - 18.
  • 2MCLACHLAN G J,KRISHNAN The EM algorithm and extension[M]. New York: Wiley, 1997.
  • 3Peter Stoica, Luzhou Xu,Jian Li. A new type of parameter estimation algorithm for missing data problems[J].Statistics & probability Letters, 2005,(75):219-229.
  • 4LITTLE R J A,RUBIN D B.Statistical Analysis with Missing Data[M] New York: Wiley, 2002.
  • 5MILLER R B,FERREIRO O A. Strategy to complete a time series with missing observations[J].College Station, 1984,26(4):251-275.
  • 6Swagata Nandi,Debasis Kundu.Estimation of parameters of partially sinusoidal frequency model[J] .Statistics,2013,47 ( 1 )45 -60.
  • 7Jelloul Allal,Mohammed B estimation for first-order random coefficient autoregressive models based on kalmen filter[J].Communications in Statistics,2013,41 (5),1 750-1 762.
  • 8岳德权,闫春霞.具有对数正态分布的alpha序列过程统计推断[J].辽宁工程技术大学学报(自然科学版),2012,31(6):909-912. 被引量:4
  • 9YUE Dequan,YAN Chunxia.Statistical inference for alpha-series process with lognormal distribition[J].Joumal of Liaoning Technical University (Natural Science),2012,31(6):1023-1 026.
  • 10黄群,林洁梅,赵佳因.两个一维总体分布相等性的permutation检验[J].辽宁工程技术大学学报(自然科学版),2012,31(6):929-932. 被引量:4

二级参考文献25

  • 1荀鹏程,赵杨,易洪刚,柏建岭,于浩,陈峰.Permutation Test在假设检验中的应用[J].数理统计与管理,2006,25(5):616-621. 被引量:38
  • 2曹晋华;程侃.可靠性数学引论.,1986.
  • 3陈家鼎;孙山泽.数理统计学讲义,1998.
  • 4Cox D R;Lewis P A.The statistical analysis of series of events,1966.
  • 5Lam Y.Geometric process and replacement problem,1988(04).
  • 6Lam Y.Nonparametric inference for geometric process,1992(21).
  • 7Lam Y;Chan S K.Statistical inference for geometric processes with lognormal distribution,1988(27).
  • 8Lam Jennefer;Chan S K.Statistical inference for geometric processes with gamma distributions.Computational,2003(47).
  • 9Halil Aydogdu;Birdal Senoglu.Parameter estimation in geometric process with Weibull distribution,2010(02).
  • 10Zhang Y L.A deteriorating cold standby repairable system with priority in use,2007(183).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部