期刊文献+

Generalized Butler-Volmer relation on a curved electrode surface under the action of stress

Generalized Butler-Volmer relation on a curved electrode surface under the action of stress
原文传递
导出
摘要 According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on the surface of a curved electrode is derived,which takes account of the effects of local stress and the radius of mean curvature. From this relationship, the overpotential is found to be proportional to hydrostatic stress and the activation volume under the condition of open circuit. The conditions for the deposition of the material made solely from solute atoms and the formation of surface pits and porous structures are obtained,using the generalized Butler-Volmer relationship. According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on the surface of a curved electrode is derived,which takes account of the effects of local stress and the radius of mean curvature. From this relationship, the overpotential is found to be proportional to hydrostatic stress and the activation volume under the condition of open circuit. The conditions for the deposition of the material made solely from solute atoms and the formation of surface pits and porous structures are obtained,using the generalized Butler-Volmer relationship.
作者 FuQian Yang
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第11期44-50,共7页 中国科学:物理学、力学、天文学(英文版)
关键词 Butler-Volmer relationship OVERPOTENTIAL stress 电极表面 局部应力 广义 弯曲 激活过程 应力作用 电极反应 曲率半径
  • 相关文献

参考文献42

  • 1L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272 (2013).
  • 2S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, J. Power Sources 257, 421 (2014).
  • 3H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, Mater. Today 17, 110 (2014).
  • 4X. Zhang, W. Shyy, and A. Marie Sastry, J. Electrochem. Soc. 154, A910 (2007).
  • 5Y. F. Gao, and M. Zhou, J. Appl. Phys. 109, 014310 (2011).
  • 6F. Yang, Mater. Sci. Eng. A 409, 153 (2005).
  • 7F. Q. Yang, Sci. China-Phys. Mech. Astron. 55, 955 (2012).
  • 8J. L. Zang, and Y. P. Zhao, Int. J. Eng. Sci. 61, 156 (2012).
  • 9I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix, J. Mech. Phys. Solids 59,1717(2011).
  • 10K. Oldham, J. Myland, and A. Bond, Electrochemical Science and Technology: Fundamentals and Applications (John Wiley & Sons, New York, 2011).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部