期刊文献+

基于操作码序列频率向量和行为特征向量的恶意软件检测 被引量:4

Malware Detection based on Frequency and Behavior Characteristics Vector of Opcode Sequence
下载PDF
导出
摘要 伴随着互联网科技的发展,恶意软件的数量也急剧增加,同时造成了严重的全球性威胁。因此,恶意软件的检测已经成为了学者们的研究热点。目前,大部分的商业软件通常采用基于特征码的检测方法,虽然这种方法被广泛使用,但其不能够检测到未知的恶意软件。相比较而言机器学习的方法可以用来解决这个问题。通常情况下有以下两种特征用于软件检测:静态特征和动态特征。静态特征是在不执行样本的情况下提取,动态特征则要求在可控的环境下执行恶意软件时提取,这两种方法各有其优缺点。提出了一种合成特征的恶意软件检测方法,它结合了操作代码序列频率向量(静态获得)和可执行文件运行时的行为特征向量(动态获得),将操作代码序列频率向量和行为特征向量以一定形式组合成新的特征向量,用以恶意软件的检测,实验表明,这种组合形式的特征检测方法增强了这两种特征单独用于检测恶意软件的性能。 Along with the development of the internet technology, malware software grows rapidly in number and poses serious threats to the worldwide network security. For this reason, the detection of malicious software becomes a hotpot for scholars to study. Currently, most commercial antivirus softwares commonly employ signature-based detection method. And however, this signature- based method usually could not detect unknown malware. Machine-learning method may rather be used to solve this problem. General- ly, there are two features for malware detection, that is , static and dynamic, static characterc is extracted with no file execution, while dynamic character extracted with the file execution and both methods have their own advantages and disadvantages. In this paper, a method to detect unknown malware is proposed, which combines the vector of operating-sequence' s frequency ( statically obtained) with the vector of behavior characteristics (dynamically obtained) when the executable file is executed. Experiment shows that this hy- brid approach could improve the performance of these two features separately.
作者 修扬 刘嘉勇
出处 《信息安全与通信保密》 2016年第9期97-101,共5页 Information Security and Communications Privacy
关键词 恶意软件检测 静态特征 动态特征 操作码序列频率向量 行为特征向量 机器学习 malware detection static characteristics dynamic characteristics vector of operating-sequence frequency vector ofbehavior characteristics machine learning.
  • 相关文献

参考文献17

  • 1N Kuzurin , A Shokurov, N Vamovsky and V Zakharnv. On the Concept of Software Obfuscation in Computer Security [ C]. Information Security, 10th International Conference, ISC 2007.Valparafso, Chile, Proceedings,2007, 4779:281-298.
  • 2Q Zhang and D Reeves, Metaaware: Identifying Metamorphic Malware [ C ]. Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, 2007:411-420.
  • 3张跃骞,何泾沙.基于机器学习的Windows环境下恶意程序检测系统[J].重庆邮电大学学报(自然科学版),2014,26(6):778-784. 被引量:3
  • 4Schultz M, Eskin E, Zadok F, et al.Data Mining Methods for Detection of New Malicious Executables [J]. IEEE SYMPOSI- UM ON SECURITY AND PRIVACY, 1999, 1(01) : 38-49.
  • 5Schultz M, Eskin E, Zadok F, et al. Data Mining Methods for Detection of New Malicious Executablesl C J. Security and Pri- vacy, 2001. S&P 2001.IEEE,2001:38-49.
  • 6Koher J, Maloof M. Learning to Detect Malicious Executables in the Wildl CI. Proceedings of the 2004 ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining, ACM New York, NY,USA ,2004:470 478.
  • 7SANTOS I, BREZO F, UGARTE-PEDRERO X, et al. Opcode Sequences as Representation of Executables for Data-mining- based Unknown Malware Detection [ J]. Information Sciences, 2013, 231(9): 64-82.
  • 8McGill M, Salton G. Introduction to Modem Information Re- trieval[ M]. McGraw-Hill, 1983:305-306.
  • 9邢玉娟,张成文,谭萍,曹晓丽.基于信息增益和支持向量机的网络新闻评论情感观点分类[J].兰州文理学院学报(自然科学版),2015,29(5):55-58. 被引量:2
  • 10王博,姜建国,齐标,仇新梁.基于行为数据处理的恶意代码族群分类研究[J].保密科学技术,2015(1):20-23. 被引量:2

二级参考文献40

  • 1王海峰,夏洪雷,孙冰.基于程序行为特征的病毒检测技术与应用[J].计算机系统应用,2006,15(5):29-31. 被引量:6
  • 2Vimal K K. Securing communication using function extraction technology for malicious code behavior analysis[J]. Computers and Security, 2009,28: 77-84.
  • 3Shankarapani M K, et aI. Malware detection using assembly and API call sequences[J]. Journal in Computer Virology, 2011 : 107- 119.
  • 4Sami A, Yadegari B, et al. Malware detection based on mining API calls [C]//Proceedings of the 2010 ACM Symposium on Applied Computing. Mar. 2010: 1020-1025.
  • 5沙为超,谢荣传.一种基于本地化特征的恶意代码检测系统设计[J].电脑知识与技术:学术交流,2007.
  • 6张岩.基于SVM算法的文本分类器的实现[D].成都:电子科技大学计算机科学与工程学院,2011.
  • 7史培培,吕林,张明威,周维贵.基于行为的恶意程序监测研究[J].计算机时代,2007(11):19-21. 被引量:1
  • 8吴冰,云晓春,高琪.基于网络的恶意代码检测技术[J].通信学报,2007,28(11):87-91. 被引量:8
  • 9SAHU M, AHIRWAR M, HEMLATA A. A Review of Mal- ware Detection Based on Pattern Matching Technique [ J ]. International Journal of Computer Science and Infor- mation Technologies ,2014,5 ( 1 ) :944-947.
  • 10LO R,LEVITY K Olsson R. MCF:a malicious code filter [ J]. Computer & Security, 1995 ( 14 ) :541-566.

共引文献17

同被引文献26

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部