期刊文献+

裂缝性致密砂岩储层声波测井物理模型试验

The Physical Model Experiment of Sonic Logging in Fractured Tight Sandstone Reservoirs
下载PDF
导出
摘要 低孔、低渗致密砂岩油气藏等复杂油气藏是当前及今后相当长时间内油气勘探的主体。因此,低孔、低渗致密砂岩的精细评价成为测井专业的发展趋势和核心任务。为此,开展了裂缝性致密砂岩储层声波测井物理模型试验研究。该次研究包括模型井试验和小岩心试验两部分:模型井试验用100倍带光源读数显微镜(刻度1DIV/0.02mm)来刻度裂缝宽度(100μm-14mm),再用声波测井换能器来测量不同裂缝宽度时的波形;小岩心试验针对不同孔隙度(3.7%-7.5%)、不同裂缝宽度(30—500μm)下,纵波、横波同一时刻的波峰幅度进行纵向对比,得到声波幅度的变化趋势。试验结果表明:随着裂缝宽度的增加,纵波和横波幅度都呈明显的衰减趋势;与纵波幅度的变化情况相比,横波的衰减情况更严重;裂缝宽度越大,纵波、横波衰减系数越大。综合物理模型试验测量结果及已研究的数值模拟计算结果认为,当裂缝宽度小于100μm时,波形幅度随裂缝宽度的变化非常敏感,递减幅度非常快,不能定量确定裂缝宽度。 Tight sandstone reservoir with low porosity and low permeability has been the major location for oil and gas exploration at present and in the years to come. Therefore, the fine evaluation of tight sandstone reservoirs with low porosity and low permeability was a development trend and core task for well logging. For this purpose, the research and experiment of sonic logging physical model were carried out in fractured tight sandstone reservoirs. The research included modeling wells and small core experiments. The modeling wells experiment was carried out by using 100 time light readout microscope (scale 1DIV/0.02 mm) to scale the fracture width (100 μm·14 mm), and acoustic logging transducer was applied to measure the waveforms at different fracture widths. In the small core experiment, different porosities (3.7% - 7.5%) and different fissure widths (30 - 500 μm) were taken into consideration, the P-wave and S-wave amplitudes were lon- gitudinally compared in the experiment at the same time and the variation trend of wave ampli- tude was obtained from the experiment. The experiment results showed that diminishing trend of P-wave and S-wave amplitude attenuation was more obvious with the increase of fracture width. Compared with the changes of the P-wave amplitude, attenuation of S-wave was more obvious. The greater the fracture width was, the larger the attenuation coefficient of P-wave and S-wave was. The results of physical model and numerical simulation show that waveform amplitude is very sensitive and diminishes rapidly with the change of fracture width when the fracture width is less than 100 μm. Therefore fracture width cannot be determined quantitatively.
作者 龚丹 章成广
出处 《石油天然气学报》 CAS CSCD 2016年第3期41-49,共9页 Journal of Oil and Gas Technology
关键词 声波测井 裂缝性致密砂岩 物理模型 测井响应特征 Acoustic Logging, Fractured Tight Sandstone, Physical Model, Logging Response Characteristics
  • 相关文献

参考文献14

  • 1Hornby, B., Johnson, D physics, 54, 1274-1288. and Winkler, K. (1989) Fracture Evaluation Using Reflected Stoneley-Wave Arrivals. Geo- httt3://dx.doi.or/10.1190/1.1442587.
  • 2Tang, X.M. and Cheng, C.H. (1993) Borehole Stoneley Wave Propagation across Permeable Structures. Geophysical Prospecting, 41, 165-187. http://dx.doi.org/10.1111/j. 1365-2478.1993.tb00864.x.
  • 3Tang, X.M. (1991) Dynamic Peameability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. The Journal of the Acoustical Society of America, 90, 1632-1646. http://dx.doi.or/10.1121/1.401904.
  • 4Tang, X.M. and Cheng, C.H. (1996) Fast Inversion of Formation Permeability from Stoneley Wave Logs Using a Sim- plified Biot-Rosenbaum Model. Geophysics, 61, 639-645. http://dx.doi.org/10.1190/1.1443993.
  • 5Tang, X.M. (1991) Dynamic Peameability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. The Journal of the Acoustical Society of America, 90, 1632-1646. http://dx.doi.ore_,/10.1121 / 1.401904.
  • 6Tang, X.M. and Prospecting, 41, Cheng, C.H. (1993) Borehole Stoneley Wave Propagation across Permeable Structures. Geophysical 165-187. htto://dx.doi.or/10.1111/i. 1365-2478 1993.tb00864.x.
  • 7Tang, X.M. and Cheng, C.H. (1996) Fast Inversion of Formation Permeability from Stoneley Wave Logs Using a Sim- plified Biot-Rosenbaum Model. Geophysics, 61,639-645. http://dx.doi.org/10.1190/1.1443993.
  • 8Tang, X.M. (1990) Acoustic Logging in Crackd and Porous Formations. Ph.D. Thesis, Massachusetts Institute of Technology, Boston.
  • 9Chen, S.T. (1982) The Full Acoustic Wave Train in a Laboratory Model of a Borehole. Geophysics, 47, 1512-1520. htto://dx.doi, or/10.1190/1.1441301.
  • 10Chen, S.T. (1989) Shear Wave Logging with Muhi-Pole Sources. Geophysics, 54, 590-597 htto://dx.doi.or 10.1190/1.1442686.

二级参考文献10

  • 1陈德华,丛健生,徐德龙,王英威,李文彬.裂缝性地层中的井孔声场模拟[J].大庆石油学院学报,2004,28(3):4-6. 被引量:9
  • 2林伟军,王秀明,张海澜.倾斜地层中的井孔声场研究[J].地球物理学报,2006,49(1):284-294. 被引量:18
  • 3Spring, C. and Dudley, D. (1992) Acoustic-Wave Propagation in a Cylindrical Borehole with Fractures. The Journul of the Acoustical Sociely of America, 91,658-669. http://dx.doi.org/10.1121/1.402527.
  • 4Kostek, S., Johnson, D. and Randall, C. (1998) The Interaction of Tube Waves with Borehole Fractures. Part 1: Nu- merical Models. Geophysics, 63, 800-808. http://dx.doi.org/10.1190/1.1444391.
  • 5Matuszyk, P.J., Torres-Verdin, C. and Pardo, D. (2013) Frequency-Domain Finite-Element Simulations of 2D Sonic Wireline Borehole Measurements Acquired in Fractured and Thinly Bedded Formations. Geophysics, 78, 193-207. http://dx.doi.org/l 0.1190/geo2012-0397.1.
  • 6Guan, W., Hu, H. and He, X. (2009) Finite-Difference Modeling of the Monopole Acoustic Logging in a Horizontally Stratified Porous Formation. The Journal of the Acoustical Society of America, 125, 1942-1950. http://dx.doi.org/10.1121 / 1.3081518.
  • 7Leslie, H.D. and Randall, C.J. (1992) Multipole Sources in Boreholes Penetrating Anisotropic Formations. The Journal of the Acoustical Society of America, 91, 12-17. http://dx.doi.org/10.1121 / 1.402761.
  • 8Cheng, N.Y., Cheng, C.H. and Toksoz, M.N. (1995) Borehole Wave Propagation in Three Dimensions. The Journal of the Acoustical Society of America, 97, 3483-3493. http://dx.doi.org/10.1121 / 1.412996.
  • 9Sinha, B.K., Ergtin, $. And Liu, Q.H. (2006) Elastic-Wave Propagation in Deviated Wells in Anisotropic Formations. Geophysics, 71, 191-202. http://dx.doi.org/10.1190/1.2358402.
  • 10阎守国,宋若龙,吕伟国,马俊,王克协.横向各向同性地层斜井中正交偶极子激发声场的数值模拟[J].地球物理学报,2011,54(9):2412-2418. 被引量:9

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部