期刊文献+

锂离子电池热解气体爆炸极限测定及其危险性分析 被引量:27

Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis
下载PDF
导出
摘要 为定量研究锂离子电池热失控的危险性,利用锂离子电池在滥用条件下释放气体的种类及体积分数,计算锂离子电池热解气体爆炸极限并研究锂电池荷电状态对热解气体爆炸极限的影响。结果表明:在一定热失控条件下锂离子电池荷电状态为100%时其热解气爆炸下限为6.22%,上限为38.4%,在相同热失控条件下,锂离子电池热解气体的爆炸极限范围随着荷电状态的升高而增大,锂电池的荷电状态对热解气体的爆炸上限影响较大而对爆炸下限影响较小。在相似条件下,锂离子电池热解气体的爆炸极限范围比普通烃类气体大,一旦锂电池发生热失控会对锂离子电池运输造成潜在威胁。 In order to quantitatively study the risk of thermal runaway for lithium-ion battery,the explosion limit of pyrolysis gas was calculated and the influence of State of Charge( SOC) on the explosion limit of pyrolysis gas was studied for lithium-ion battery throught utilizing the type and volume fraction of gas released by lithium-ion battery under the abusive conditions. The results showed that under a certain thermal runaway conditions,when the SOC of lithium-ion battery is 100%,the lower explosion limit of pyrolysis gas is 6. 22%,and the upper limit is 38. 4%. Under the same thermal runaway conditions,the explosion limit range of pyrolysis gas increases with the increase of SOC,and the SOC of lithium battery has larger influence on the upper explosion limit of pyrolysis gas and less influence on the lower explosion limit. Under similar conditions,the explosion limit range of pyrolysis gas for lithium-ion battery is larger than ordinary hydrocarbon gas. Once the lithium battery occurs thermal runaway,it will cause a potential threat to the transport of lithium-ion battery.
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2016年第9期46-49,共4页 Journal of Safety Science and Technology
基金 国家自然科学基金委员会与中国民用航空局联合资助项目(U1333123) 中央高校基本科研业务费资助项目(3122013D016)
关键词 锂离子电池 热失控 热解气体 爆炸极限 危险性分析 lithium-ion battery thermal runaway pyrolysis gas explosion limit risk analysis
  • 相关文献

参考文献15

  • 1Spinner N S, Field C R, Hammond M H, et al. Physical and chem- ical analysis of lithium - ion battery cell - to - cell failure events in- side custom fire chamber [ J ]. Journal of Power Sources, 2015 (279) :713 -721.
  • 2Eshetu G G, Grugeon S, Laruelle S, et al. In - depth safety - fo- cused analysis of solvents used in electrolytes for large scale lithium ion batteries [ J]. Physical Chemistry Chemical Physics , 2013 (15) :9145 -9155.
  • 3李毅,于东兴,张少禹,刘欣,王健强.锂离子电池火灾危险性研究[J].中国安全科学学报,2012,22(11):36-41. 被引量:56
  • 4Ribiere P,Grugeon S, Morcrette M, et al . Investigation on the fire - induced hazards of Li - ion battery cells by fire calorimetry [ J ]. Energy & Environmental Science, 2012,5 ( 1 ) :5271 - 5280.
  • 5Summer S M. Flammability assessment of lithium - ion and lithium - ion polymer batteries cells designed for aircraft power usage [ R ]. FAA Report, DOT/FAA/AR - 09/55, 2010.
  • 6黄丽,金明钢,尤金跨,林祖赓.聚合物锂离子蓄电池气胀原因的初步探讨[J].电源技术,2003,27(B05):163-165. 被引量:13
  • 7Shin J S, Han C H, Jung U H, et al. Effect of Li2CO3additive on gas generation in lithium - ion batteries [ J ]. Journal of Power Sources, 2002,109 ( 1 ) : 47 - 52.
  • 8郭华军,李新海,张新明,王红强,王志兴,彭文杰.锂在人造石墨、中间相炭微球及无定形碳中的扩散系数(英文)[J].新型炭材料,2007,22(1):7-11. 被引量:11
  • 9陈益奎,张世杰,史鹏飞,赵晖,段艳丽.聚合物锂离子蓄电池化成气体自动消失现象[J].电源技术,2006,30(12):964-967. 被引量:7
  • 10Doyle M, Newman J. Analysis of capacity-rate data for lithium bat- teries using simplified models of the discharge process[ J]. Journal of Applied Electrochemistry, 1997,27 (7) : 846 - 856.

二级参考文献47

共引文献135

同被引文献187

引证文献27

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部