期刊文献+

大规模并行RWG矩量法矩阵填充优化 被引量:3

Optimization of matrix filling in the large scale parallel RWG basis based method of moments
下载PDF
导出
摘要 针对并行RWG矩量法进程间冗余积分问题,通过优化网格编号提出了一种高效的并行矩阵填充方案.在矩阵块循环分布并行策略基础上,对三角形公共边进行重新编号,使得需要相同三角形积分的矩阵元素分布在同一进程上,从而大幅度地减少进程间的冗余积分计算.数值结果表明,该并行矩阵填充方案消除了绝大部分的进程间冗余积分,提高了并行矩阵填充的效率. To solve the issue of inter-process redundant integrals in the parallel Method of Moments (MoM) using RWG basis functions, an efficient parallel matrix filling scheme is proposed through mesh index optimization. Based on a block-cyclic matrix distribution strategy, the common edges of triangles are renumbered to make the matrix elements that need the same triangular integrals be assigned to one process, thus drastically reducing the inter-process redundant integrals. Numerical results show that the proposed scheme eliminates most of the inter-process redundant integrals and greatly improves the efficiency of parallel matrix filling.
作者 陈岩 张玉 王永 赵勋旺 林中朝 CHEN Yan ZHANG Yu WANG Yong ZHAO Xunwang LIN Zhongchao(Science and Technology on Antenna and Microwave Lab., Xidian Univ., Xi'an 710071, China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第5期46-51,共6页 Journal of Xidian University
基金 国家高技术研究发展计划(863计划)资助项目(2012AA01A308) 国家自然科学基金资助项目(61301069 61072019) 教育部新世纪优秀人才支持计划资助项目(NCET-13-0949) 陕西省青年科技新星资助项目(2013KJXX-67) 中央高校基本科研业务费专项资金重点资助项目(JY10000902002)
关键词 RWG矩量法 并行 矩阵填充方案 优化 冗余积分 RWG method of moments parallel matrix filling scheme optimization redundant integral
  • 相关文献

参考文献1

二级参考文献17

  • 1葛文慧,晏璎,吕兆峰,赵勋旺,张玉.并行高阶矩量法分析大型阵列天线的辐射特性[J].微波学报,2012,28(S2):15-18. 被引量:4
  • 2杨则南,江树刚,晏璎,张玉.机载微带天线阵列的辐射特性分析[J].微波学报,2012,28(S2):28-30. 被引量:4
  • 3Harrington R F. Field Computation by Moment Methods [M]. New York: Wiley-IEEE Press, 1993.
  • 4Zhang Yu, Sarkar T K. Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain [M]. NewYork: Wiley-IEEE Press, 2009.
  • 5Rao S M, Wilton D R, Glisson A W. Electromagnetic Scattering by Surfaces of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3) : 409-418.
  • 6Rokhlin V. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions [J]. Applied and Computational Harmonic Analysis, 1993, 1(1):82-93.
  • 7Velamparambil S, Chew W C. Analysis and Performance of a Distributed Memory Multilevel Fast Multipole Algorithm [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8) : 2719-2727.
  • 8Nguyen Q M, Dang V, Kilic O, et al. Parallelizing Fast Multipole Method for Large-scale Electromagnetic Problems Using GPU Clusters [J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 868-871.
  • 9Zhang Y, Zhao X W, Donoro D G, et al. Parallelized Hybrid Method with Higher-order MoM and PO for Analysis of Phased Array Antennas on Electrically Large Platforms[J]. IEEE Transactions on Antennas and Propagation, 2010, 58 (12) : 4110-4115.
  • 10Zhao X W, Zhang Y, Zhang H W, et al. Parallel MoM-PO Method with Out-of-core Technique for Analysis of Complex Arrays on Electrically Large Platforms [J]. Progress in Electromagnetics Research, 2010, 108: 1-21.

共引文献8

同被引文献11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部