期刊文献+

二氧化碳水合物导热和热扩散特性 被引量:8

Characteristics of thermal conductivity and thermal diffusivity of carbon dioxide hydrate
下载PDF
导出
摘要 热导率和热扩散率是天然气水合物资源开采关键性基础热物性数据,采用反应釜内壁衬有氟塑料材料,低过冷度,让水合物在反应釜内逐层生成的合成方法,获得可直接用于导热测试的二氧化碳水合物样品。采用瞬变平面热源法原位测试了温度264.68-282.04 K、压力1.5-3 MPa二氧化碳水合物热导率、热扩散率,并测试了二氧化碳水合物在268.05 K、0.6 MPa左右发生自保护效应过程中热导率、热扩散率,获得了晶态下和自保护效应过程中的二氧化碳水合物热导率、热扩散率变化特性。测试结果将为天然气水合物资源的开发利用提供基础数据和理论依据。 Thermal conductivity and thermal diffusivity are two key basic factors of thermal property data that determine gas hydrate resource extraction. In this study, carbon dioxide hydrate sample was formed from a supersaturated carbon dioxide gas solution and layer by layer formed with the equal thickness in the reactor cell lined with fluorine plastics. The thermal conductivity and thermal diffusivity of carbon dioxide hydrate were in-situ measured by means of transient plane source technique. The measurements were performed at 264.68—282.04 K and 1.5—3 MPa. The measurements were also performed during self-preservation effect process at 268.05 K and 0.6 MPa. The characteristics of thermal conductivity and thermal diffusivity of carbon dioxide hydrate were obtained on crystalline state and during self-preservation effect process. The results of this paper can provide basic data and theoretical basis for the development and utilization of natural gas hydrate resources.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第10期4169-4175,共7页 CIESC Journal
基金 国家自然科学基金项目(51576197 51106163) 中国科学院知识创新工程(KGZD-EW-301)~~
关键词 水合物 热力学性质 热传导 热扩散率 平面热源法 自保护效应 hydrate thermodynamic properties heat conduction thermal diffusivity transient plane source technique self-preservation effect
  • 相关文献

参考文献22

  • 1MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas hydrates-a potential energy source for the 21st century[J]. J. Pet. Sci. Eng., 2007, 56:14-31.
  • 2STOLL R D, BRYAN G M. Physical properties of sediments containing gas hydrates[J]. J. Geophys. Res., 1979, 84:1629-1634.
  • 3COOK J G, LEAIST D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophys. Res. Lett., 1983, 10:397-399.
  • 4DEMARTIN B J. Laboratory measurements of the thermal conductivity and thermal diffusivity of methane hydrate at simulated in situ conditions[D]. Georgia:Georgia Institute of Technology, 2001.
  • 5WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophys. J. Int., 2007, 169:767-774.
  • 6HUANG D Z, FAN S S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution[J]. J. Chem. Eng. Data, 2004, 49:1479-1482.
  • 7ROSENBAUM E J, ENGLISH N J, JOHNSON J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. J. Phys. Chem. B, 2007, 111:13194-13250.
  • 8WAITE W F, GILBERT L Y, WINTERS W J, et al. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data[J]. Rev. Sci. Instrum., 2006, 77(4):044904-044904-5.
  • 9COOK J G, LEAIST D G. An exploratory study of the thermal conductivity of methane hydrates[J]. Geophys. Res. Lett., 1983, 10:397-399.
  • 10ROSS R G, ANDERSSON P. Clathrate and other solid phases in the tetrahydrofuran-water system:thermal conductivity and heat capacity under pressure[J].Can. J. Chem., 1982, 60:881-892.

同被引文献53

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部