期刊文献+

光电化学刻蚀方法去除SiC衬底外延石墨烯缓冲层及其表征 被引量:1

Photo-electrochemical removal of graphene buffer layer on SiC substrate
下载PDF
导出
摘要 高温条件下裂解碳化硅(SiC)单晶,在直径5cm的4H-SiC(0001)面制备出单层石墨烯。利用光电化学刻蚀方法,使KOH刻蚀液与SiC发生反应,降低石墨烯与衬底之间的相互作用力,去掉原位生长过程中SiC衬底与石墨烯之间存在的缓冲层,获得准自由的双层石墨烯。首先通过对比不同的电流密度和光照强度,总结出电流密度为6mA·cm-2、紫外灯与样品间距为3cm时,石墨烯缓冲层的去除效率以及石墨烯质量皆为最佳。采用此优化后工艺处理的样品,拉曼光谱表明原位生长的缓冲层与衬底脱离,表现出准自由石墨烯的特性。X射线光电子能谱(XPS)C1s谱图中代表上层石墨烯与衬底Si悬键结合的S1、S2特征峰消失,即石墨烯缓冲层消失。通过分析刻蚀过程中的电化学曲线,提出了刻蚀过程的化学反应过程中的动态特性。 Monolayer graphene was fabricated on silicon carbide(Si C)(0001) face by thermal decomposition of Si C single crystal of 5 cm in diameter. The reaction of Si C substrate with aqueous potassium hydroxide(KOH) by photo-electrochemical etching reduced the interaction force between graphene and Si C substrate, and the quasi-free-standing bilayer graphene was obtained by removal of buffer layer between graphene and Si C substrate. Numerous conditions of current densities and illumination intensities were studied. The optimal condition to remove graphene buffer layer, which would synchronously obtain free standing graphene film in the highest quality, was estimated to be in the current intensity of 6 m A·cm?2 when samples held the distance of 3 cm to UV light source. Among three current densities of 3, 6 and 9 m A·cm?2, Raman spectra showed that the 6 m A·cm?2current density was the most suitable for etching process. The decoupling effect of graphene buffer layer showed a positive correlation to UV light intensity in a certain range. Raman and XPS spectra on graphene film prepared under optimized condition showed broken bonds between Si C substrate and in-situ grown buffer layer and characteristics of free standing graphene film. The removal of graphene buffer layer was shown by disappearance of characteristic S1 and S2 peaks of buffer layer in XPS C1 s spectra. The chemical reaction dynamics in etching process was proposed by analyzing electrochemical voltage-time curves.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第10期4356-4362,共7页 CIESC Journal
基金 国家自然科学基金项目(513230013) 山东大学自然科学专项(2014QY005)~~
关键词 石墨烯 合成 碳化硅 缓冲层 电化学 光化学 graphene synthesis silicon carbide buffer layer electrochemistry photochemistry
  • 相关文献

参考文献32

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
  • 2GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
  • 3LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.
  • 4KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230):706-710.
  • 5REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2008, 9(1):30-35.
  • 6DE HEER W A, BERGER C, WU X, et al. Epitaxial graphene[J]. Solid State Communications, 2007, 143(1):92-100.
  • 7HASS J, DE HEER W A, CONRAD E H. The growth and morphology of epitaxial multilayer graphene[J]. Journal of Physics:Condensed Matter, 2008, 20(32):323202.
  • 8GOLER S, COLETTI C, PIAZZA V, et al. Revealing the atomic structure of the buffer layer between SiC (0001) and epitaxial graphene[J]. Carbon, 2013, 51:249-254.
  • 9RISTEIN J, MAMMADOV S, SEYLLER T. Origin of doping in quasi-free-standing graphene on silicon carbide[J]. Physical Review Letters, 2012, 108(24):246104.
  • 10RIEDL C, COLETTI C, IWASAKI T, et al. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation[J]. Physical Review Letters, 2009, 103(24):246804.

二级参考文献29

  • 1H. Shiomi, H. Kinoshita, T. Furusho, T. Hayashi, M. Tajima, E. Higashi, J. Cryst. Growth 292 (2006) 188-191.
  • 2J.B. Casady, R_W. Johnson, Solid-State Electron. 39 (1996) 1409- 1422.
  • 3S. Rysy, H. Sadowski, R. Helbig, J. Solid State Electrochem. 3 (1999) 437-445.
  • 4A.M. Rossi, F. Giorgis, V. Ballarini, S. Borini, Phys. Stat. Sol. A 202 (2005) 1548-1551.
  • 5A.O. Konstaninov, C.I. Harris, A. Henry, E. Janzen, Mater. Sci. Eng. B 29 (1995) 114-117.
  • 6S.A. Alekseev, V.N. Zaitsev, Chem. Mater. 19 (2007) 2189-2194.
  • 7A.O. Konstantinov, A. Henry, C.I. Harris, E. Janzen, Appl. Phys. Lett. 66 (1995) 2250-2252.
  • 8S. Zangooie, P.O.A. Persson, J.N. Hilfiker, L. Hultman, H. Arwin, J. Appl. Phys. 87 (2000) 8497-8503.
  • 9J.S. Shor, L. Bemis, A.D. Kurtz, J. Appl. Phys. 76 (1994) 4045- 4049.
  • 10E Yun, S. Dogan, Y.T. Moon, Y. Fu, J. Xu, D. Johnstone, H. Morkoe, Phys. Star. Sol. C 2 (2005) 2087-2090.

同被引文献11

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部