期刊文献+

基于有限细节的植物叶片多密度点云重建算法 被引量:2

Multiple Density Leaf Reconstruction Based on Limited Details
下载PDF
导出
摘要 针对粗糙点云在植物模型重建过程中遇到的噪点多、边缘粘合等问题,提出一种基于有限细节的多密度点云重建算法。首先利用Kinect采集到的深度和颜色信息提取出植物叶片点云,并通过颜色信息对原始点云进行稀疏处理,分离开粘合部位,得到理想的点云;然后基于人眼视觉识别的局限性提出了一种有限细节多密度点云重建算法,与传统的网格重建不同,其以点代面通过不断细化点的密度来产生视觉误差上的模糊曲面。实验证明,所提算法的重建效果和速度在一定程度上优于网格重建的。 According to the rough point cloud encountering the problem of noise and edged bonding in the process of plants modeling,we presented a multiple density point cloud reconstruction algorithm based on limited details. Firstly, we used the color information to spare the original points cloud extracted by Kinect, and then separate the adhesive parts to gain ideal point cloud. Simultaneously,a new method named multiple density with limited details reconstructive algorithm are provided on the basis of limitation of human recognition. The algorithm is different from traditional grid reconstruction, it generates the fuzzy surface by refining the density of points in order to reach the purpose of surface. Finally, the experiments show that the result and speed of the new algorithm are better than mesh reconstruction in a certain extent.
作者 曾兰玲 张巍 杨洋 詹永照 ZENG Lan-ling ZHANG Wei YANG Yang ZHAN Yong-zhao(College of Computer Science and Telecommunication Engineering.Jiangsu University,Zhenjiang 212013,China)
出处 《计算机科学》 CSCD 北大核心 2016年第8期292-296,共5页 Computer Science
基金 国家自然科学基金项目(61005017) 教育部博士点基金(201132271100211)资助
关键词 植物建模 KINECT 点云 多密度重建 Plants modeling,Kinect,Points cloud,Multiple density rebuilding
  • 相关文献

参考文献15

  • 1Zhang Z. Microsoft kinect sensor and its effect[J]. MultiMedia,IEEE,2012,19(2) :4-10.
  • 2Suma E A, Lange B, Rizzo A S, et al. Faast: The flexible action and articulated skeleton toolkit[-C]//2011 IEEE Virtual Reality Conference (VR). IEEE, 2011 : 247-248.
  • 3Kar A. Skeletal tracking using microsoft kinect [J]. Methodolo- gy, 2010,1 : 1-11.
  • 4Ren Z, Meng J, Yuan J, et al. Robust hand gesture recognition with kinect sensor[C]//Proceedings of the 19th ACM intema- tional conference on Multimedia. ACM, 2011:759-760.
  • 5Ren Z, Yuan J, Zhang Z. Robust hand gesture recognition based on finger-earth mover' s distance with a commodity depth ea- mera[C] //Proceedings of the 19th ACM International Confe- rence on Multimedia. ACM, 2011:1093-1096.
  • 6Kleinsmith A, Bianchi-Berthouze N. Affective body expression perception and recognition: A survey[J]. IEEE Transactions on Affective Computing, 2013,4 (1) : 15-33.
  • 7Li W,Mian A S,Krishna A,et al. Using kinect for face recogni- tion under varying poses, expressions, illumination and disguise [C]//2013 IEEE Workshop on Applications of Computer Vision (WACV). IEEE,2013 : 186-192.
  • 8Izadi S, Kim D, Hilliges O, et al. Kinect Fusion: real-time 3D re- construction and interaction using a moving depth camera[C]// Proceedings of the 24th Annual ACM Symposium on User In-terrace Software and Technology. ACM,2011..559-568.
  • 9Tong J,Zhou J,Liu L,et al. Scanning 3d full human bodies using kinects[J]. IEEE Transactions on Visualization and Computer Graphics, 2012,18(4) .. 643-650.
  • 10Shen C H, Huang S S, Fu H, et al. Adaptive partitioning of ur- ban facades[J]. ACM Transactions on Graphics (TOG), ACM, 2011,30(6) : 184.

同被引文献8

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部