期刊文献+

3-Set Packing参数化计数问题的复杂性及近似算法

Research on Complexity and Approximation Algorithm for Counting 3-Set Packings of Size k
下载PDF
导出
摘要 3-Set Packing参数化计数问题即在一个3-Set Packing实例中统计所有大小为k的不同packing的个数。首先证明了该问题的计算复杂性是#W[1]-难的,表明该问题不大可能存在固定参数可解的精确算法(除非#W[1]=FPT)。然后,通过拓展3-D Matching参数化计数问题的算法对3-Set Packing参数化计数问题提出了一个基于Monte-Carlo自适应覆盖算法和着色技术的随机近似算法。 Counting 3-Set Packings of size k is to count distinct packings of size k in a given instance of 3-Set Packing. We first showed that the complexity of this problem is # W[l]-hard, which indicates that there exists no efficient fixed- parameter tractable algorithm for it(unless # W[l] = FPT). Subsequently, by extending the algorithm for counting 3-D Matchings of size k, we obtained a generalized approximation algorithm for counting 3-Set Packings of size k. This algo- rithm is heavily based on the Monte-Carlo self-adjusting coverage algorithm and the recent improved color-coding tech- niques.
作者 刘运龙
出处 《计算机科学》 CSCD 北大核心 2016年第9期23-26,共4页 Computer Science
关键词 3-Set PACKING 计数 复杂性 近似算法 3-Set Packing, Counting, Complexity, Approximation algorithm
  • 相关文献

参考文献16

  • 1McCartin C. Parameterized counting problems[C]//Proceedings of the 27th International Symposium on Mathematical Founda- tions of Computer Science(MFCS'02). 2002:556-567.
  • 2Flum J, Grohe M. The parameterized complexity of counting problems[J]. SIAM Journal on Computing, 2004, 33 (4) : 892- 922.
  • 3Chihao Zhang,Yijia Chen.Counting Problems in Parameterized Complexity[J].Tsinghua Science and Technology,2014,19(4):410-420. 被引量:1
  • 4Flum J, Grohe M. Parameterized complexity theory[M]. Springer-Verlag Berlin Heidelberg, 2006.
  • 5Curticapean R. Countingmatchingofsizekis # WE 13-hard[C]// Proceedings of the 40th International Colloquium on Automata, Languages and Programming(ICALP' 13). 2013 : 352-363.
  • 6Arvind V,Raman V. Approximation algorithms for some para- meterized counting problems[C]//Proceedings of the 13th In- ternational Symposium on Algorithms and Computation (I- SAAC'02). 2002: 453-464.
  • 7Garey M R, Johnson D S. Computers and Intractability:A Guide to the Theory of NP-completeness[M]. W. H. Freeman, New York, 1979.
  • 8Wang Jian-xin, Feng Qi-long. An O ** (3. 523k ) parameterized al- gorithm for 3-Sct Packing[C]//Proceedings of the 5th Interna- tional Conference on Theory and Applications of Models of Computation (TAMC'08). 2008 : 82-93.
  • 9Abu-Khzam F N. A quadratic kernel for 3-Set Packing [C]// Proceedings of the 6th Annual Conference on Theory and Appli- cations of Models of Computation (TAMC'09). 2009:81-87.
  • 10冯启龙,王建新,陈建二.加权3-Set Packing的改进算法[J].软件学报,2010,21(5):886-898. 被引量:1

二级参考文献71

  • 1Chen JE,Liu Y,Lu SJ,Sze SH.Greedy localization and color-coding:Improved matching and packing algorithms.In:Bodlaender H,et al.,eds.Proc.of the 2nd Int'l Workshop on Parameterized and Exact Computation.LNCS 4169,Berlin:Springer-Verlag,2006.84-95.
  • 2Chandra B,Halldorsson M.Greedy local improvement and weighted set packing approximation.Journal of Algorithms,2001,39(2):223-240.[doi:10.1006/jagm.2000.1155].
  • 3Downey R,Fellows M.Parameterized Complexity.New York:Springer-Verlag,1999.215-220.
  • 4Arkin E,Hassin R.On local search for weighted k-set packing.In:Burkard R,et al.,eds.Proc.of the European Symp.on Algorithms.Berlin:Springer-Verlag,1997.13-22.
  • 5Bafna V,Narayan B,Ravi R.Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles).Discrete Applied Mathematics,1996,71(1-3):41-53.[doi:10.1016/S0166-218X(96)00063-7].
  • 6Berman P.A d/2 approximation for maximum weight independent set in d-claw free graphs.In:Halldórsson M,ed.Proc.of the 7th Scandinavian Workshop on Algorithm Theory.LNCS 1851,Berlin:Springer-Verlag,2000.214-219.
  • 7Liu YL,Chen JE,Wang JX.Parameterized algorithms for weighted matching and packing problems.In:Cai JY,et al.,eds.Proc.of the 4th Annual Conf.on Theory and Applications of Models of Computation.LNCS 4484,Berlin:Springer-Verlag,2007.692-702.
  • 8Jia WJ,Zhang CL,Chen JE.An efficient parameterized algorithm for m-set packing.Journal of Algorithms,2004,50(1):106-117.[doi:10.1016/j.jalgor.2003.07.001].
  • 9Koutis I.A faster parameterized algorithm for set packing.Information Processing Letters,2005,94(1):7-9.[doi:10.1016/ j.ipl.2004.12.005].
  • 10Fellows MR,Knauer C,Nishimura N,Ragde P,Rosamond F,Stege U,Thilikos D,Whitesides S.Faster fixed-parameter tractable algorithms for matching and packing problems.In:Albers S,et al.,eds.Proc.of the European Symp.on Algorithms.LNCS 3221,Berlin:Springer-Verlag,2004.311-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部