期刊文献+

与副本结合的部分再生码

Partially Regenerating Codes Combined with Replicas
下载PDF
导出
摘要 (n,k,d)再生码允许存储节点传送所存数据的线性组合以及增加修复入度d,显著地降低了修复带宽,但是引入了更多的参与节点数及磁盘I/O。针对这一不足,提出了一种将复制方式与再生码结合的(n,k,d,λ,θ)部分再生码,并得到了与再生码类似的阈值函数和2个特殊点——最小存储量点和最小修复带宽点。部分再生码可以综合利用修复入度d和副本因子θ同时降低修复带宽和磁盘I/O。当所有的节点存储量相等时,部分再生码的单点修复带宽和磁盘I/O均优于再生码。定量比较的结果也显示,在最小存储量点,部分再生码比再生码有更低的平均修复带宽和平均磁盘I/O;在最小修复带宽点,部分再生码有更低的平均磁盘I/O以及与再生码相近的平均修复带宽。更重要的是,部分再生码适用于d≤n-2的所有情形。 (n,k, d) Regenerating codes(RC) significantly reduce repair bandwidth by allowing storage nodes to send the linear combinations of their data to the newcomer and increasing repair degree d. But they bring in more participating nodes and disk I/O. To solve this problem, this paper introduced partially regenerating codes(PRC) which combine RC (n,k, d,2,0) with replicas. PRC have also a threshold function and two special points . minimum-storage point and mini- mum-bandwidth point. PRC can simultaneously reduce repair bandwidth and disk I/O by utilizing repair degree d and replica factor 0. When the storage capacity of all nodes are the same, the repair bandwidth and disk I/O per node of PRC are superior to that of RC. The results of quantitative comparison also show that, comparing to RC, on minimum-storage point, PRC have less mean repair bandwidth and disk I/O;on minimum-bandwidth point, PRC have less mean disk I/O and mean repair bandwidth to similar RC. What's more important is that PRC is achievable when d≤n-2.
出处 《计算机科学》 CSCD 北大核心 2016年第9期203-208,共6页 Computer Science
关键词 再生码 副本 修复带宽 磁盘I/O 修复入度 Regenerating codes, Replica, Repair bandwidth, Disk I/O, Repair degree
  • 相关文献

参考文献20

  • 1Weatherspoon H, Kubiatowicz J D. Erasure coding vs. repli- cation: A quantitative comparison[C]///International Workshop on Peer-to-Peer Systems. Cambridge, Massachusetts, United States: Springer Berlin Heidelberg, 2002 : 328-337.
  • 2罗象宏,舒继武.存储系统中的纠删码研究综述[J].计算机研究与发展,2012,49(1):1-11. 被引量:93
  • 3Huang Cheng, Simitci H, Xu Yi-kang, et al. Erasure coding in windows azure storage [C] // Usenix Conference on Technical Conference. Berkeley, CA, USA: USENIX, 2012 : 2.
  • 4Sathiamoorthy M, Asteris M, Papailiopoulos D, et ak XORing ele- phants: Novel erasure codes for big data [ C] // VLDB Endow- ment. Riva del Garda, Italy: dbTrento, 2013 : 325-336.
  • 5Rodrigues R, Liskov B. High availability in DHTs: Erasure co- ding vs. replication [C]//Proc of IPTPS. Ithaca, NY, USA: Springer Berlin Heidelberg, 2005 : 226-239.
  • 6Rashmi K V, Nakkiran P, Wang Jlng-yan, et al. Having Your Cake and Eating It Too:Jointly Optimal Erasure Codes for I/O, Storage, and Network-banwidth [C]//USENIX Conference on File and Storage Technologies. Santa Clare, CA, USA: USE- NIX, 2015 : 81-94.
  • 7Dimakis A G,Godfrey P B,Wu Yun-nan, et al. Network coding for distributed storage systems[J].IEEE Trans on Information Theory,2010,56(9) :4539-4551.
  • 8Ahlswede R, Cai N, Li S Y R, et al. Network information flow [J].IEEE Trans on Information Theory, 2000, 46 (4):1204- 1216.
  • 9Lin S J, Chung W H. Novel Repair-by-Transfer Codes and Sys- tematic Exact-MBR Codes with Lower Complexities and Smaller Field Sizes[J]. IEEE Transactions on Parallel and Distributed Systems, 2014,25(12) : 3232-3241.
  • 10Hu Yu-chong, Lee P, Shum K W. Analysis and construction of functional regenerating codes with uncoded repair for distributed storage systems[C] // INFOCOM. Turin: IEEE, 2013 : 2355-2363.

二级参考文献42

  • 1Layman P, Varian H R. How much information 2003? [EB/OL]. [2010 10-18]. http://www2, sims. berkeley. edu/research/proiects/how-mueh-info-2003.
  • 2Pinheiro E, Weber W D, Barroso L A. Failure trends in a large disk drive population [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007 : 17-28.
  • 3Schroeder B, Gibson G A. Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you? [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007: 1-16.
  • 4Bairavasundaram L N, Goodson G R, Pasupathy S, et al. An analysis of latent sector errors in disk drives [C]//Proc of 2007 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 200: 289-300.
  • 5Hafner J M, Deenadhayalan V, Rao K, et al. Matrix methods for lost data reconstruction in erasure codes [C] // Proc of the 4th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2005: 183-196.
  • 6Hafner J M, Deenadhayalan V, Kanungo T, et al. Performance metrics for erasure codes in storage systems, RJ 10321 [R]. San Jose, [A] IBM Research, 2004.
  • 7Li M, Shu J, Zheng W. GRID Codes: Strip based erasure codes with high fault tolerance for storage systems [J].ACM Transon Storage, 2009, 4(4): 1-22.
  • 8Blaum M, Brady J, Bruek J, et al. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures [J].IEEE Trans on Computer, 1995, 44 (2) 192-202.
  • 9Corbett P, English B, Goel A, et al. Row-diagonal redundant for double disk failure correction [C] //Proc of the 3rd USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2004:2-15.
  • 10Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. IEEE Trans on Information Theory, 1999, 45 (1) : 272-276.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部