期刊文献+

一种改进的粒子滤波算法及其在GPS/DR组合定位中的应用 被引量:7

Improved Particle Filter and its Application in GPS/DR Integrated Positioning System
下载PDF
导出
摘要 针对粒子滤波的重要性密度函数选择问题,提出一种基于集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)的改进粒子滤波算法。该方法利用集合卡尔曼滤波产生粒子滤波在每一时刻各粒子的重要性密度函数,在融合最新观测信息的同时,使重要性密度函数更加符合状态的真实后验概率分布。为消除样本枯竭现象,对重采样后的粒子进行马尔科夫链蒙特卡洛处理。在仿真实验中,将新算法用于GPS/DR组合定位系统,与粒子滤波、扩展卡尔曼粒子滤波以及无迹粒子滤波进行比较。仿真结果表明,该算法的估计精度高于传统粒子滤波算法,同时其能够有效控制计算量,并且在粒子数目较少时仍能保证较好的估计性能。 An improved particle filtering algorithm based on the ensemble Kalman filter (EnKF) was proposed in this paper starting with the selection of importance density function of the particle filter. At each time instant, the impor- tance density function is generated by EnKF which fuses the latest observation information and propagates the system states by using a collection of sampled state vectors, called an ensemble. In this way, the importance density function can be very close to the true posterior probability. Furthermore, to avoid the particle impoverishment problem, the Markov Chain Monte Carlo method was introduced after resampling process. In the simulation, the developed filter was com- pared with standard particle filter, extended Kalman particle filter and unscented particle filter in GPS/DR integrated system. The simulation results demonstrate the validity of the developed algorithm. Under the same conditions, the new filter is superior to other particle filtering algorithms with the respect to estimation accuracy, as well as it controls the computational load effectively. It is also found that the new filter can obtain outstanding performance even with a small number of particles.
出处 《计算机科学》 CSCD 北大核心 2016年第9期218-222,共5页 Computer Science
基金 国家自然科学基金(61273291 61305073) 山西省高校科技创新项目(2014104) 山西省回国留学人员科研资助项目(2012-008)资助
关键词 粒子滤波 重要性密度函数 集合卡尔曼滤波 组合定位系统 Particle filter, Importance density function, Ensemble kalman filter, Integrated localization system
  • 相关文献

参考文献19

  • 1EI-Rabbany A. Introduction to GPS: The Global Positioning System,Second Edition[M]. Artech House Publishers, 2006:1- 20.
  • 2Quddus M, Washington S. Shortest path and vehicle traiectory aided map-matching for low frequency GPS data[J]. Transporta- tion Research Part C: Emerging Technologies, 2015,55 ; 328-339.
  • 3Bevly D M, Parkinson B. Cascaded Kalman Filters for Accurate Estimation of Multiple Biases, Dead-Reckoning Navigation, and Full State Feedback Control of Ground Vehicles [J]. IEEE Transactions on Control Systems Technology, 2007,15(2) : 199- 208.
  • 4Bong-Geun C, J a-Kyung K, Bok-Joong Y, et al. The research of dead reckoning stabilization algorithm using different kinds of sensors[C] // 2010 International Conference on Control Automa- tion and Systems (ICCAS 2010). Kintex: IEEE Press, 2010: 1089-1092.
  • 5Zhang Hai-tao, Zhao Yu-jiao. The performancecomparison and analysis of extended Kalman filters for GPS/DR navigation [J].Optik-International Journal for Light and Electron Optics, 2011,122(9) :777-781.
  • 6Tanathong S, Lee I. Using GPS / INS data to enhance image matching for real-time aerial triangulation[J]. Computers & Ge- oseiences, 2014,72 : 244-254.
  • 7宫轶松.粒子滤波算法研究及其在GPS/DR组合导航中的应用[D].解放军信息工程大学,2010.
  • 8Jwo D J, Chung F C, Yu K L. GPS/INS Integration Accuracy Enhancement Using the Interacting Multiple Model Nonlinear Filters[J]. Journal of Applied Research and Technology, 2013, 11(4) :496-509.
  • 9李志,谢强.一种基于改进粒子滤波的运动目标跟踪[J].计算机科学,2014,41(2):232-235. 被引量:6
  • 10Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Methods for Bayesian Filtering[J]. Statistics and Computing, 2000,10(3) : 197-208.

二级参考文献13

  • 1叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 2Ning J,Zhang L,Zhang D. Robust mean-shift tracking with corrected background-weighted histogram[J].Computer Vision,2012,(1):62-69.
  • 3Wang Jun,Peng Jin-ye,Feng Xiao-yi. An Improved Camshift-Based Particle Filter Algorithm for Face Tracking[A].2011.278-285.
  • 4Crisan D,Doucet A. A Survey of Convergence Results on Particle Filtering Methods for Practitioners[J].{H}IEEE Transactions on Signal Processing,2002,(3):736-746.
  • 5Pan P,Schonfeld D. Video Tracking Based on Sequential Particle Filtering on Graphs[J].{H}IEEE Transactions on Image Processing,2011,(6):1641-1651.
  • 6Song Lei,Zhang Rong,Liu Zheng-kai. Object Tracking Based on Parzen Particle Filter Using Multiple Cues[A].2007.206-215.
  • 7Vadakkepat P,Liu Jing. Improved Particle Filter in Sensor Fusion for Tracking Randomly Moving Object[J].{H}IEEE Transactions on Instrumentation and Measurement,2006.1823-1832.
  • 8Fernandes E M G P,Martins T F M C,Rocha A M A C. Fish swarm intelligent algorithm for bound constrained global optimization[A].2009.1-3.
  • 9Yazdani D,Toosi A N,Meybodi R M. Fuzzy Adaptive Artificial Fish Swarm Algorithm[A].2010.334-343.
  • 10Han Hua,Ding Yong-sheng,Hao Kuang-rong. A new immune particle filter algorithm for tracking a moving target[A].2010.3248-3252.

共引文献40

同被引文献54

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部