期刊文献+

一种基于贝叶斯网络的个性化协同过滤推荐方法研究 被引量:12

Method of Personalized Collaboration Filter Recommendation Based on Bayesian Network
下载PDF
导出
摘要 针对推荐系统不能有效进行个性化推荐问题,在协同过滤过程中引入语义校验,通过对基于用户的协同过滤推荐结果进行语义校验,剔除概率较低的推荐结果,选择概率较高的结果推荐给用户,从而实现个性化语义推荐。在构建贝叶斯语义校验网络时,增加用户"喜好"偏好字段,通过问卷调查及信息反馈,确定用户对物品的喜好偏好值,确保贝叶斯语义校验网络的科学性。实验结果表明,本方法能剔除用户喜好度较低的物品,提高用户的满意度。 Lacking of high efficiency personal recommendation in collaboration filtering recommendation system by using semantic recommendation system, we proposed a new method in checking. We check the result of collaboration filtering based on user item by Bayesian semantic to eliminate the item of lower probability, and to select the higher probability item to users. In constructing the Bayesian semantic check network, we add an emotion field named "fancy" by question- naire survey and information feedback, and we decide user's emotion for some goods to ensure the scientific of semantic checking network. Experiments show that the method can eliminate the items with low user preferences and improve the satisfaction degree of the users.
出处 《计算机科学》 CSCD 北大核心 2016年第9期266-268,共3页 Computer Science
基金 国家自然科学基金:基于情感语义的全局均衡智能调度理论与方法研究(61152003)资助
关键词 协同过滤 贝叶斯网络 推荐系统 语义 Collaboration filtering, Bayesian network, Recommendation system, Semantic
  • 相关文献

参考文献3

二级参考文献30

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2张富国.基于协同过滤技术的电子商务推荐系统初探[J].科技广场,2006(8):7-9. 被引量:2
  • 3马文峰,杜小勇.数字资源整合的发展趋势[J].图书情报工作,2007,51(7):66-70. 被引量:40
  • 4SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C] //Proc of the 10th International World Wide Web Conference.New York:ACM Press,2001:285-295.
  • 5HERLOCKER J,KONSTAN J,TERVEEN L,et al.Evaluating collaborative filtering recommender systems[J].ACM Trans on Information Systems,2004,22(1):5-53.
  • 6ESTER M,KRIEFEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C] //SIMOUDIS E,HAN J W,FAYYAD U M.Proc of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
  • 7ERTO(O)Z L,STEINBACH M,KUMAR V.Finding clusters of diffe-rent sizes,shapes,and densities in noisy,high dimensional data[C] //Proc of the 2nd SIAM International Conference on Data Mining.2003.
  • 8SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender system:a case study[C] //Proc of ACM WebKDD 2000 Workshop.2000.
  • 9Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave aninformation tapestry. [ J ]. Communications of the ACM.1992,35(12) : 61 -70.
  • 10Breese I S, Heekeman D, Kadie C. Empirical analysis of predictive algorithms tot collaborative filtering[ C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco: ACM Press, 1998:43 -52.

共引文献48

同被引文献87

引证文献12

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部