期刊文献+

一种基于用户行为特征选择的点击欺诈检测方法 被引量:5

Click Fraud Detection Method Based on User Behavior Feature Selection
下载PDF
导出
摘要 在线广告是目前众多网络巨头收入的主要来源,在线广告也为网络的健康发展提供了强大的经济支撑。目前,利用用户行为属性特征来识别点击欺诈的方法中,含有较多的冗余特征,检测效率相对较低。针对这一问题,提出了一种属性特征选择与分类方法相结合的欺诈检测方法。通过训练数据集找到欺诈用户点击广告的属性特征集合,采用Fisher分方法得到了属性特征重要度排序,选取重要属性特征,并基于这些重要的特征使用支持向量机二分类方法分类。在真实数据集上的实验结果证明了该方法的可行性与有效性。 Online advertisement is not only the main sources of income of profit for internet giants, but also provides powerful economic support for the internet development. The commonly used methods of click fraud detection, which are based on the features of client's behavior,may lead to inefficiency in fraud detection due to redundant features. To solve this problem, a fraud detection method which combines feature selection with classification method was proposed. According to the feature attributes set of fraud advertisement which is found through training set, attribute significance is sorted by Fisher score method. The important attributes is selected and the SVM algorithm is lastly introduced into classification based on these important attributes. Experiments on real data set demonstrate that the proposed detection method is feasible and valid.
作者 董亚楠 刘学军 李斌 DONG Ya-nan LIU Xue-jun LI Bin(College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816 ,China)
出处 《计算机科学》 CSCD 北大核心 2016年第10期145-149,共5页 Computer Science
基金 国家自然科学基金(61203072) 江苏省重点研发计划(社会发展)(BE2015697)资助
关键词 点击欺诈 Fisher分 支持向量机 特征选择 Click fraud, Fisher score, Support vector machine, Feature selection
  • 相关文献

参考文献2

二级参考文献17

  • 1Lee W, StolfoSJ. Data mining approaches for intrusion detection [A]. In: Proceedings, Seventh USENIX Security Symposium, San Antonio, TX, 1998
  • 2Jha S,Tan K, Maxion R. Markov chains, classifiers and intrusion detection [A]. In: The 14th IEEE Computer Security Foundations Workshop, Canada, 2001. Proceedings, Seventh USENIX Security Symposium, San Antonio,TX, 1998
  • 3Balajinath B, Raghavan S. Intrusion detection through learning behavior model [J]. Computer Communications, 2001, 24 (12):1202-1212
  • 4Forrest S, Hofmeyr S A. Computer Immunology [J]. Communications of the ACM,1997,40(10): 88-96
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995
  • 6Kim D S,Park J S. Network-based intrusion detection with support vector machines [A]. In: KahngH-K. Ed. ICOIN 2003,LNCS 2662,2003.,747-756
  • 7Sohn T,Seo J T, Moon J S. A study on the covert channel detection of TCP/IP header using support vector machines [A]. In:Qing S, Gollmann D, Zhou J. Eds. ICOIN 2003, LNCS 2836,2003. 313-324
  • 8Hu W J,Liao Y H,Vemuri V R. Robust anomaly detection using support vector machines [J]. IEEE Transaetrions on Pattern Analysis and Machine Intelligence. (in press)
  • 9Scholkopf B,Smola A,Williamson R C,et al. New support vector algorithms. Neural Computation[J]. 2000,12(5): 1207-1245
  • 10Lee W, Stolfo S. A framework for constructing features and models for intrusion detection systems [J]. ACM Transactions on Information and System Security,2000(3) :227-261

共引文献41

同被引文献24

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部