期刊文献+

基于迭代容积卡尔曼滤波的神经网络训练算法 被引量:1

Novel Neural Network Training Algorithm Based on Iterated Cubature Kalman Filter
下载PDF
导出
摘要 针对现有应用非线性滤波算法对神经网络进行训练时存在精度不足的问题,提出了一种基于迭代容积卡尔曼滤波的神经网络训练算法。首先,将前馈神经网络各个节点的连接权值和偏置作为状态向量,建立前馈神经网络的状态空间模型。其次,利用Spherical-Radial准则生成容积点,并依据Gauss-Newton迭代策略来优化量测更新过程中获取的状态估计值和状态估计误差协方差,通过容积卡尔曼滤波估计精度的改善,提升神经网络节点的连接权值和偏置的训练效果。理论分析和仿真实验结果验证了所提算法的可行性和有效性。 In view of insufficient accuracy in the existing application of nonlinear filtering algorithm for neural network training,a novel neural network training algorithm based on iterated cubature Kalman filter was proposed. Firstly, the connection weights and bias of feedforward neural network are used as the state vector to establish the state space mo- del. Secondly, using the Spherical-Radial standard to generate cubature points, the state estimation and covariance ac- quired during the measurement update process are optimized based on Gauss-Newton iteration strategy. The training effect of neural network connecting weights and bias is enhanced through the improvement of the estimation precision of cubature Kalman filter. The theoretical analysis and simulation results show the feasibility and effectiveness of the algo- rithm.
作者 袁光耀 胡振涛 张谨 赵新强 付春玲 YUAN Guang-yao HU Zhen-tao ZHANG Jin ZHAO Xin-qiang FU Chun-ling(Institute of Image Processing and Pattern Recognition, Henan University,Kaifeng 475004, China School of Physics and Electronics, Henan University,Kaifeng 475004, China)
出处 《计算机科学》 CSCD 北大核心 2016年第10期256-261,共6页 Computer Science
基金 国家自然科学基金(61300214) 中国博士后基金(2014M551999) 河南省高校科技创新团队支持计划(13IRTSTHN021) 河南省高校青年骨干教师资助计划(2013GGJS-026) 河南大学优秀青年培育基金(0000A40366) 河南大学教学改革项目(2015)资助
关键词 前馈神经网络 状态空间模型 容积卡尔曼滤波 Gauss-Newton迭代 Feedforward neural network, State-space model, Cubature kalman filter, Gauss-Newton iterate
  • 相关文献

参考文献5

二级参考文献36

  • 1Fan Chunling 1,2 , Jin Zhihua1, Tian Weifeng1 & Qian Feng11. Department of Information Measurement Technology and Instrument, Shanghai Jiaotong University,Shanghai 200030, P. R. China,2. College of Automation and Electric Engineering, Qingdao University of Science and Technology,Qingdao 266042, P. R. China.Grey Markov chain and its application in drift prediction model of FOGs[J].Journal of Systems Engineering and Electronics,2005,16(2):388-393. 被引量:5
  • 2[美]Hagan M T,Demuth H B,Beale M H.神经网络设计[M].戴葵,等译.北京:机械工业出版社,2002.
  • 3Lexington M, Darpa. Neural Network Study. MIT Lincoln Laboratory, 1988.
  • 4He Q, Zhang Y W. On Prefihering and Endpoint Detection of Speech Signal[J]. ICSP98, 1998, 1:749-752. Baldi P. Gradient Descent learning algorithm overview: General dynamical systems perspective. Control Theory Appl, 1995,6 (1) : 182-195.
  • 5Baldi P. Gradient Descent learning algorithm overview: General dynamical systems perspective. Control Theory Appl, 1995, 6 (1) : 182-195.
  • 6Hagan M T,Demuth H B,Beale M H.Neural Network Design[M].Boston:PWS Pub Co.,1995.
  • 7Purushothaman G,Karayiannis N B.Quantum neural networks(QNNs):inherently fuzzy feedforward neural networks[J].Neural Networks,IEEE Transactions on,1997,8(3):679-693.
  • 8Karayiannis N B,Xiong Y.Training Reformulated Radial Basis Function Neural Networks Capable of Identifying Uncertainty in Data Classification[J].IEEE Transactions on Neural Networks,2006,17(5):1222-1234.
  • 9Indrajit M,Srikanta R.Comparing the performance of neuralnetworks developed by using Levenberg-Marquardt and Qusai-Newton with the gradient descent algorithm for modeling a multiple response grinding process[J].Expert Systems with Applications,2012,39(3):2397-2407.
  • 10Wilamowski B M,Hao Yu.Improved Computation for Levenberg-Marquardt Training[J].IEEE Transactions on Neural Networks,2010,21(6):930-937.

共引文献33

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部